Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Pattern Recognition: Introduction, Features, Classifiers and Principles, Daniel Stadler, Jurgen Beyerer, Raphael Hagmanns


Варианты приобретения
Цена: 99110.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 268 шт.  
При оформлении заказа до:
Ориентировочная дата поставки:
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Daniel Stadler, Jurgen Beyerer, Raphael Hagmanns
Название:  Pattern Recognition: Introduction, Features, Classifiers and Principles
ISBN: 9783111339191
Издательство: Walter de Gruyter
Классификация:



ISBN-10: 311133919X
Обложка/Формат: Paperback
Страницы: 300
Вес: 0.60 кг.
Дата издания: 01.08.2024
Серия: De gruyter textbook
Язык: English
Издание: 2 revised edition
Иллюстрации: 200 illustrations, color
Размер: 171 x 240 x 21
Ключевые слова: Artificial intelligence,Automatic control engineering,Databases,Signal processing, COMPUTERS / Artificial Intelligence / General,COMPUTERS / Data Science / General,TECHNOLOGY & ENGINEERING / Automation,TECHNOLOGY & ENGINEERING / Signals & Signal Processing
Подзаголовок: Introduction, features, classifiers and principles
Рейтинг:
Поставляется из: Германии
Описание:

The book offers a thorough introduction to Pattern Recognition aimed at master and advanced bachelor students of engineering and the natural sciences. Besides classification - the heart of Pattern Recognition - special emphasis is put on features, their typology, their properties and their systematic construction. Additionally, general principles that govern Pattern Recognition are illustrated and explained in a comprehensible way. Rather than presenting a complete overview over the rapidly evolving field, the book is to clarifies the concepts so that the reader can easily understand the underlying ideas and the rationale behind the methods. For this purpose, the mathematical treatment of Pattern Recognition is pushed so far that the mechanisms of action become clear and visible, but not farther. Therefore, not all derivations are driven into the last mathematical detail, as a mathematician would expect it. Ideas of proofs are presented instead of complete proofs. From the authors’ point of view, this concept allows to teach the essential ideas of Pattern Recognition with sufficient depth within a relatively lean book.

Mathematical methods explained thoroughly
Extremely practical approach with many examples
Based on over ten years lecture at Karlsruhe Institute of Technology
For students but also for practitioners



Introduction to graph signal processing /

Автор: Ortega, Antonio,
Название: Introduction to graph signal processing /
ISBN: 1108428134 ISBN-13(EAN): 9781108428132
Издательство: Cambridge Academ
Рейтинг:
Цена: 102790.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An intuitive, accessible text explaining the fundamentals and applications of signal processing on graphs. It covers basic and advanced topics, includes numerous exercises and Matlab examples, and is accompanied online by a solutions manual for instructors, making it essential reading for graduate students, researchers, and industry professionals.

Автор: Alex Pappachen James
Название: Deep learning classifiers with memristive networks.
ISBN: 3030145220 ISBN-13(EAN): 9783030145224
Издательство: Springer
Рейтинг:
Цена: 158380.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks.

Introduction to pattern recognition and machine learning

Автор: Fieguth, Paul
Название: Introduction to pattern recognition and machine learning
ISBN: 3030959937 ISBN-13(EAN): 9783030959937
Издательство: Springer
Рейтинг:
Цена: 83850.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The domains of Pattern Recognition and Machine Learning have experienced exceptional interest and growth, however the overwhelming number of methods and applications can make the fields seem bewildering.

An Introduction to Optimization on Smooth Manifolds

Автор: Nicolas Boumal
Название: An Introduction to Optimization on Smooth Manifolds
ISBN: 1009166174 ISBN-13(EAN): 9781009166171
Издательство: Cambridge Academ
Рейтинг:
Цена: 105600.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Optimization on Riemannian manifolds-the result of smooth geometry and optimization merging into one elegant modern framework-spans many areas of science and engineering, including machine learning, computer vision, signal processing, dynamical systems and scientific computing. This text introduces the differential geometry and Riemannian geometry concepts that will help students and researchers in applied mathematics, computer science and engineering gain a firm mathematical grounding to use these tools confidently in their research. Its charts-last approach will prove more intuitive from an optimizer's viewpoint, and all definitions and theorems are motivated to build time-tested optimization algorithms. Starting from first principles, the text goes on to cover current research on topics including worst-case complexity and geodesic convexity. Readers will appreciate the tricks of the trade for conducting research and for numerical implementations sprinkled throughout the book.

An Introduction to Optimization on Smooth Manifolds

Автор: Nicolas Boumal
Название: An Introduction to Optimization on Smooth Manifolds
ISBN: 1009166158 ISBN-13(EAN): 9781009166157
Издательство: Cambridge Academ
Рейтинг:
Цена: 44350.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Optimization on Riemannian manifolds-the result of smooth geometry and optimization merging into one elegant modern framework-spans many areas of science and engineering, including machine learning, computer vision, signal processing, dynamical systems and scientific computing. This text introduces the differential geometry and Riemannian geometry concepts that will help students and researchers in applied mathematics, computer science and engineering gain a firm mathematical grounding to use these tools confidently in their research. Its charts-last approach will prove more intuitive from an optimizer's viewpoint, and all definitions and theorems are motivated to build time-tested optimization algorithms. Starting from first principles, the text goes on to cover current research on topics including worst-case complexity and geodesic convexity. Readers will appreciate the tricks of the trade for conducting research and for numerical implementations sprinkled throughout the book.

Image Registration

Автор: A. Ardeshir Goshtasby
Название: Image Registration
ISBN: 1447157990 ISBN-13(EAN): 9781447157991
Издательство: Springer
Рейтинг:
Цена: 144410.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents a detailed guide to image registration. It details the principles behind a vast array of tools and methods as well as compares their performances using synthetic and real data.

Multimedia Interaction and Intelligent User Interfaces

Автор: Ling Shao; Caifeng Shan; Jiebo Luo; Minoru Etoh
Название: Multimedia Interaction and Intelligent User Interfaces
ISBN: 1447125908 ISBN-13(EAN): 9781447125907
Издательство: Springer
Рейтинг:
Цена: 135090.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Covering multimedia content analysis and human-machine interaction, this book assembles contributions from leading international experts to examine a range of relevant techniques from computer vision and machine learning to emerging AI technology.

Introduction to Statistical Pattern Recognition

Автор: Fukunaga, Keinosuke
Название: Introduction to Statistical Pattern Recognition
ISBN: 0122698517 ISBN-13(EAN): 9780122698514
Издательство: Elsevier Science
Рейтинг:
Цена: 56130.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.

High-dimensional data analysis with low-dimensional models

Автор: Wright, John (columbia University, New York) Ma, Yi (university Of California, Berkeley)
Название: High-dimensional data analysis with low-dimensional models
ISBN: 1108489737 ISBN-13(EAN): 9781108489737
Издательство: Cambridge Academ
Рейтинг:
Цена: 63350.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A systematic introduction to the theory, algorithms, and applications of key mathematical models for data science. Covering applications including imaging, communication, and face recognition, with online code, it is ideal for senior/graduate students in computer science, data science, and electrical engineering. With foreword by Emmanuel Candes.

An Introduction to Object Recognition

Автор: Marco Alexander Treiber
Название: An Introduction to Object Recognition
ISBN: 1447125789 ISBN-13(EAN): 9781447125785
Издательство: Springer
Рейтинг:
Цена: 97820.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This text/reference provides a comprehensive introduction to object recognition (OR). The book presents an overview of the diverse applications for OR and highlights important algorithm classes, presenting representative example algorithms for each class.

Pattern Recognition and Classification

Автор: Geoff Dougherty
Название: Pattern Recognition and Classification
ISBN: 1493953354 ISBN-13(EAN): 9781493953356
Издательство: Springer
Рейтинг:
Цена: 83850.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume, both comprehensive and accessible, introduces all the key concepts in pattern recognition, and includes many examples and exercises that make it an ideal guide to an important methodology widely deployed in today`s ubiquitous automated systems.

Multiple Classifier Systems

Автор: Zhi-Hua Zhou; Fabio Roli; Josef Kittler
Название: Multiple Classifier Systems
ISBN: 3642380662 ISBN-13(EAN): 9783642380662
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the 11th International Workshop on Multiple Classifier Systems, MCS 2013, held in Nanjing, China, in May 2013. The papers address issues in multiple classifier systems and ensemble methods, including pattern recognition, machine learning, neural network, data mining and statistics.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия