Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Deep learning classifiers with memristive networks., Alex Pappachen James


Варианты приобретения
Цена: 158380.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 204 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Alex Pappachen James   (Алекс Джеймс)
Название:  Deep learning classifiers with memristive networks.
Перевод названия: Алекс Джеймс: Глубокообучаемые классификаторы с мемристивными сетями
ISBN: 9783030145224
Издательство: Springer
Классификация:




ISBN-10: 3030145220
Обложка/Формат: Hardcover
Страницы: 213
Вес: 0.50 кг.
Дата издания: 11.07.2019
Серия: Modeling and optimization in science and technologies
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 102 illustrations, color; 25 illustrations, black and white; xiii, 213 p. 127 illus., 102 illus. in color.
Размер: 234 x 156 x 14
Читательская аудитория: Professional & vocational
Подзаголовок: Theory and applications
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks.

Strength or accuracy: credit assignment in learning classifier systems

Автор: Kovacs, Tim
Название: Strength or accuracy: credit assignment in learning classifier systems
ISBN: 1447110587 ISBN-13(EAN): 9781447110583
Издательство: Springer
Рейтинг:
Цена: 130430.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Classifier systems are an intriguing approach to a broad range of machine learning problems, based on automated generation and evaluation of condi tion/action rules.

Multiple Classifier Systems

Автор: Nikunj C. Oza; Robi Polikar; Josef Kittler; Fabio
Название: Multiple Classifier Systems
ISBN: 3540263063 ISBN-13(EAN): 9783540263067
Издательство: Springer
Рейтинг:
Цена: 88500.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Constitutes the refereed proceedings of the 6th International Workshop on Multiple Classifier Systems, MCS 2005. This book contains papers that are organized in topical sections on boosting, combination methods, performance analysis, and applications. They exemplify the advances in the theory and applications of multiple classifier systems.

Advances in Memristors, Memristive Devices and Systems

Автор: Sundarapandian Vaidyanathan; Christos Volos
Название: Advances in Memristors, Memristive Devices and Systems
ISBN: 3319517236 ISBN-13(EAN): 9783319517230
Издательство: Springer
Рейтинг:
Цена: 204970.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Chapter 1 Memristor Emulators A Note on Modeling.- Chapter 2 A Simple Oscillator using Memristor.- Chapter 3 A Hyperjerk Memristive System with Hidden Attractors.- Chapter 4 A Memristive System with Hidden Attractors and its Engineering Application.- Chapter 5 Adaptive Control, Synchronization and Circuit Simulation of a Memristor-Based.- Chapter 6 Modern System Design using Memristors.- Chapter 7 RF/Microwave Applications of Memristors.- Chapter 8 Theory, Modeling and Design of Memristor-Based Min-Max Circuits.- Chapter 9 Analysis of a 4-D Hyperchaotic Fractional-Order Memristive System with Hidden Attractors.- Chapter 10 Adaptive Control and Synchronization of a Memristor-Based Shinriki's System.


Hybrid Classifiers

Автор: Michal Wozniak
Название: Hybrid Classifiers
ISBN: 3642409962 ISBN-13(EAN): 9783642409967
Издательство: Springer
Рейтинг:
Цена: 130430.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book details how hybridization can help improve the quality of computer classification systems. It introduces the different levels of hybridization and illuminates common problems faced when dealing with such projects.

Pattern Recognition: Introduction, Features, Classifiers and Principles

Автор: Jurgen Beyerer, Matthias Richter, Matthias Nagel
Название: Pattern Recognition: Introduction, Features, Classifiers and Principles
ISBN: 3110537931 ISBN-13(EAN): 9783110537932
Издательство: Walter de Gruyter
Цена: 86720.00 T
Наличие на складе: Невозможна поставка.
Описание: The book offers a thorough introduction to Pattern Recognition aimed at master and advanced bachelor students of engineering and the natural sciences. Besides classification - the heart of Pattern Recognition - special emphasis is put on features, their typology, their properties and their systematic construction. Additionally, general principles that govern Pattern Recognition are illustrated and explained in a comprehensible way. Rather than presenting a complete overview over the rapidly evolving field, the book is to clarifies the concepts so that the reader can easily understand the underlying ideas and the rationale behind the methods. For this purpose, the mathematical treatment of Pattern Recognition is pushed so far that the mechanisms of action become clear and visible, but not farther. Therefore, not all derivations are driven into the last mathematical detail, as a mathematician would expect it. Ideas of proofs are presented instead of complete proofs. From the authors’ point of view, this concept allows to teach the essential ideas of Pattern Recognition with sufficient depth within a relatively lean book. Mathematical methods explained thoroughly Extremely practical approach with many examples Based on over ten years lecture at Karlsruhe Institute of Technology For students but also for practitioners

Multiple Classifier Systems

Автор: Zhi-Hua Zhou; Fabio Roli; Josef Kittler
Название: Multiple Classifier Systems
ISBN: 3642380662 ISBN-13(EAN): 9783642380662
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the 11th International Workshop on Multiple Classifier Systems, MCS 2013, held in Nanjing, China, in May 2013. The papers address issues in multiple classifier systems and ensemble methods, including pattern recognition, machine learning, neural network, data mining and statistics.

Applications of Learning Classifier Systems

Автор: Larry Bull
Название: Applications of Learning Classifier Systems
ISBN: 3642535593 ISBN-13(EAN): 9783642535598
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The field called Learning Classifier Systems is populated with romantics. The system embracing such a rule "popu- lation" would explore its available actions and responses, rewarding and rating the active rules accordingly.

Multiple Classifier Systems

Автор: Josef Kittler; Fabio Roli
Название: Multiple Classifier Systems
ISBN: 3540677046 ISBN-13(EAN): 9783540677048
Издательство: Springer
Рейтинг:
Цена: 88500.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This text constitutes the refereed proceedings of the First International Workshop on Multiple Classifier Systems, MCS 2000, held in Cagliari, Italy in June 2000. The 33 revised full papers presented together with five invited papers were carefully reviewed and selected for inclusion in the book.

Multiple Classifier Systems

Автор: J?n Atli Benediktsson; Josef Kittler; Fabio Roli
Название: Multiple Classifier Systems
ISBN: 3642023258 ISBN-13(EAN): 9783642023255
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Constitutes the refereed proceedings of the 8th International Workshop on Multiple Classifier Systems, MCS 2009, held in Reykjavik, Iceland, in June 2009. This work contains papers that are organized in topical sections on ECOC boosting and bagging, MCS in remote sensing, unbalanced data and decision templates, concept drift and SVM ensembles.

Advances in Memristors, Memristive Devices and Systems

Автор: Sundarapandian Vaidyanathan; Christos Volos
Название: Advances in Memristors, Memristive Devices and Systems
ISBN: 3319847279 ISBN-13(EAN): 9783319847276
Издательство: Springer
Рейтинг:
Цена: 214280.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Chapter 1 Memristor Emulators A Note on Modeling.- Chapter 2 A Simple Oscillator using Memristor.- Chapter 3 A Hyperjerk Memristive System with Hidden Attractors.- Chapter 4 A Memristive System with Hidden Attractors and its Engineering Application.- Chapter 5 Adaptive Control, Synchronization and Circuit Simulation of a Memristor-Based.- Chapter 6 Modern System Design using Memristors.- Chapter 7 RF/Microwave Applications of Memristors.- Chapter 8 Theory, Modeling and Design of Memristor-Based Min-Max Circuits.- Chapter 9 Analysis of a 4-D Hyperchaotic Fractional-Order Memristive System with Hidden Attractors.- Chapter 10 Adaptive Control and Synchronization of a Memristor-Based Shinriki's System.


Hybrid Classifiers

Автор: Michal Wozniak
Название: Hybrid Classifiers
ISBN: 3662523043 ISBN-13(EAN): 9783662523049
Издательство: Springer
Рейтинг:
Цена: 104480.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book details how hybridization can help improve the quality of computer classification systems. It introduces the different levels of hybridization and illuminates common problems faced when dealing with such projects.

Combining Pattern Classifiers: Methods and Algorithms

Автор: Ludmila I. Kuncheva
Название: Combining Pattern Classifiers: Methods and Algorithms
ISBN: 1118315235 ISBN-13(EAN): 9781118315231
Издательство: Wiley
Рейтинг:
Цена: 104490.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Combined classifiers, which are central to the ubiquitous performance of pattern recognition and machine learning, are generally considered more accurate than single classifiers.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия