Methods of Statistical Model Estimation, Hilbe, Joseph
Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 76850.00 T Наличие на складе: Заказано в издательстве. Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: Gelfand, Alan E. Fuentes, Montserrat Guttorp, Pete Название: Handbook of spatial statistics ISBN: 1420072870 ISBN-13(EAN): 9781420072877 Издательство: Taylor&Francis Рейтинг: Цена: 103610.00 T Наличие на складе: Есть Описание: Offers an introduction detailing the evolution of the field of spatial statistics. This title focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and, spatial point patterns.
Название: Real-World Evidence in Drug Development and Evaluation ISBN: 036702621X ISBN-13(EAN): 9780367026219 Издательство: Taylor&Francis Рейтинг: Цена: 132710.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book concerns use of real world data (RWD) and real world evidence (RWE) to aid drug development across product cycle. RWD are healthcare data that are collected outside the constraints of conventual controlled randomized trials (CRTs); whereas RWE is the knowledge derived from aggregation and analysis of RWD.
Автор: Grace Y. Yi, Aurore Delaigle, Paul Gustafson Название: Handbook of Measurement Error Models ISBN: 1138106402 ISBN-13(EAN): 9781138106406 Издательство: Taylor&Francis Рейтинг: Цена: 219470.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Reference text for statistical methods and applications for measurement error models for: researchers who work with error-contaminated data, graduate students from statistics and biostatistics, analysts in multiple fields, including medical research, biosciences, nutritional studies, epidemiological studies and environmental studies.
Автор: Whitmore, Nathan Название: R for Conservation and Development Applications ISBN: 0367205491 ISBN-13(EAN): 9780367205492 Издательство: Taylor&Francis Рейтинг: Цена: 163330.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book is bridging the gap for organisations and individuals who need to learn and use R in a part-time professional context, providing a set of skills to understand the usefulness of graphing, mapping, and modelling in R, using relatable examples throughout.
Автор: DelSole, Timothy, Название: Statistical methods for climate scientists / ISBN: 1108472419 ISBN-13(EAN): 9781108472418 Издательство: Cambridge Academ Рейтинг: Цена: 60190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: An introduction to the most commonly used statistical methods in atmospheric, oceanic and climate sciences. Each method is described step-by-step using plain language, with statistical and scientific concepts explained as needed. Requiring no previous background in statistics, it is an accessible reference for students in the climate sciences.
Автор: Christopher H Schmid Название: Handbook Of Meta-Analysis ISBN: 1498703984 ISBN-13(EAN): 9781498703987 Издательство: Taylor&Francis Рейтинг: Цена: 163330.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Meta-analysis is the application of statistics to combine results from multiple studies and draw appropriate inferences. Its use and importance have exploded over the years as the need for a robust evidence base has become clear in many scientific areas like medicine and health, social sciences, education, psychology, ecology and economics.
Автор: Fan, Jianqing Название: Statistical Learning For High-Dimen ISBN: 1466510846 ISBN-13(EAN): 9781466510845 Издательство: Taylor&Francis Рейтинг: Цена: 117390.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Gives a comprehensive and systematic account of high-dimensional data analysis, including variable selection via regularization methods and sure independent feature screening methods. It is a valuable reference for researchers involved with model selection, variable selection, machine learning, and risk management.
Автор: He, Yulei Название: Multiple Imputation Analysis For Ob ISBN: 1498722067 ISBN-13(EAN): 9781498722063 Издательство: Taylor&Francis Рейтинг: Цена: 91860.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis.
Автор: Hilbe, Joseph M. Robinson, Andrew P. Название: Methods of statistical model estimation ISBN: 0367380005 ISBN-13(EAN): 9780367380007 Издательство: Taylor&Francis Рейтинг: Цена: 65320.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Methods of Statistical Model Estimation examines the most important and popular methods used to estimate parameters for statistical models and provide informative model summary statistics. Designed for R users, the book is also ideal for anyone wanting to better understand the algorithms used for statistical model fitting.
The text presents algorithms for the estimation of a variety of regression procedures using maximum likelihood estimation, iteratively reweighted least squares regression, the EM algorithm, and MCMC sampling. Fully developed, working R code is constructed for each method. The book starts with OLS regression and generalized linear models, building to two-parameter maximum likelihood models for both pooled and panel models. It then covers a random effects model estimated using the EM algorithm and concludes with a Bayesian Poisson model using Metropolis-Hastings sampling.
The book's coverage is innovative in several ways. First, the authors use executable computer code to present and connect the theoretical content. Therefore, code is written for clarity of exposition rather than stability or speed of execution. Second, the book focuses on the performance of statistical estimation and downplays algebraic niceties. In both senses, this book is written for people who wish to fit statistical models and understand them.
See Professor Hilbe discuss the book.
Автор: Rahman Название: Small Area Estimation And Microsimu ISBN: 1482260727 ISBN-13(EAN): 9781482260724 Издательство: Taylor&Francis Рейтинг: Цена: 93910.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The book gathers information on the theories, applications, advantages, and limitations of all the small area estimation methodologies. It covers direct small area estimation methods, indirect statistical approaches, including empirical best linear unbiased prediction, empirical Bayes and hierarchical Bayes estimation methods.
Автор: Dominique Fourdrinier; William E. Strawderman; Mar Название: Shrinkage Estimation ISBN: 303002184X ISBN-13(EAN): 9783030021849 Издательство: Springer Рейтинг: Цена: 130430.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book provides a coherent framework for understanding shrinkage estimation in statistics. The term refers to modifying a classical estimator by moving it closer to a target which could be known a priori or arise from a model. The goal is to construct estimators with improved statistical properties. The book focuses primarily on point and loss estimation of the mean vector of multivariate normal and spherically symmetric distributions.
Chapter 1 reviews the statistical and decision theoretic terminology and results that will be used throughout the book.
Chapter 2 is concerned with estimating the mean vector of a multivariate normal distribution under quadratic loss from a frequentist perspective. In Chapter 3 the authors take a Bayesian view of shrinkage estimation in the normal setting. Chapter 4 introduces the general classes of spherically and elliptically symmetric distributions. Point and loss estimation for these broad classes are studied in subsequent chapters. In particular, Chapter 5 extends many of the results from Chapters 2 and 3 to spherically and elliptically symmetric distributions.
Chapter 6 considers the general linear model with spherically symmetric error distributions when a residual vector is available. Chapter 7 then considers the problem of estimating a location vector which is constrained to lie in a convex set. Much of the chapter is devoted to one of two types of constraint sets, balls and polyhedral cones. In Chapter 8 the authors focus on loss estimation and data-dependent evidence reports.
Appendices cover a number of technical topics including weakly differentiable functions; examples where Stein’s identity doesn’t hold; Stein’s lemma and Stokes’ theorem for smooth boundaries; harmonic, superharmonic and subharmonic functions; and modified Bessel functions.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz