The Elements of Statistical Learning, Trevor Hastie; Robert Tibshirani; Jerome Friedman

Автор: James Gareth Название: An Introduction to Statistical Learning ISBN: 1461471370 ISBN-13(EAN): 9781461471370 Издательство: Springer Рейтинг: Цена: 75060 T Наличие на складе: Невозможна поставка. Описание: This book presents key modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, and clustering.

Автор: Foster Ian Название: Big Data and Social Science ISBN: 1498751407 ISBN-13(EAN): 9781498751407 Издательство: Taylor&Francis Рейтинг: Цена: 49490 T Наличие на складе: Поставка под заказ. Описание: Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.

Автор: Kulkarni, Sanjeev Harman, Gilbert Название: Elementary introduction to statistical learning theory ISBN: 0470641835 ISBN-13(EAN): 9780470641835 Издательство: Wiley Рейтинг: Цена: 140180 T Наличие на складе: Поставка под заказ. Описание: * Serves as a fundamental introduction to statistical learning theory and its role in understanding human learning and inductive reasoning. * Topics of coverage include: probability, pattern recognition, optimal Bayes decision rule, nearest neighbor rule, kernel rules, neural networks, and support vector machines.

Автор: Torgo Название: Data Mining with R ISBN: 1482234890 ISBN-13(EAN): 9781482234893 Издательство: Taylor&Francis Рейтинг: Цена: 103110 T Наличие на складе: Невозможна поставка. Описание: Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luis Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He?teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.

Автор: Thisted Название: Elements of Statistical Computing ISBN: 0412013711 ISBN-13(EAN): 9780412013713 Издательство: Taylor&Francis Рейтинг: Цена: T Наличие на складе: Поставка под заказ. Описание: Statistics and computing share many close relationships. Computing now permeates every aspect of statistics, from pure description to the development of statistical theory. At the same time, the computational methods used in statistical work span much of computer science. Elements of Statistical Computing covers the broad usage of computing in statistics. It provides a comprehensive account of the most important computational statistics. Included are discussions of numerical analysis, numerical integration, and smoothing.

The author give special attention to floating point standards and numerical analysis; iterative methods for both linear and nonlinear equation, such as Gauss-Seidel method and successive over-relaxation; and computational methods for missing data, such as the EM algorithm. Also covered are new areas of interest, such as the Kalman filter, projection-pursuit methods, density estimation, and other computer-intensive techniques.

Автор: Richard A. Berk Название: Statistical Learning from a Regression Perspective ISBN: 3319440470 ISBN-13(EAN): 9783319440477 Издательство: Springer Рейтинг: Цена: 77370 T Наличие на складе: Поставка под заказ. Описание:

This textbook considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a first approximation, this can be seen as an extension of nonparametric regression.

This fully revised new edition includes important developments over the past 8 years. Consistent with modern data analytics, it emphasizes that a proper statistical learning data analysis derives from sound data collection, intelligent data management, appropriate statistical procedures, and an accessible interpretation of results. A continued emphasis on the implications for practice runs through the text. Among the statistical learning procedures examined are bagging, random forests, boosting, support vector machines and neural networks. Response variables may be quantitative or categorical. As in the first edition, a unifying theme is supervised learning that can be treated as a form of regression analysis.

Key concepts and procedures are illustrated with real applications, especially those with practical implications. A principal instance is the need to explicitly take into account asymmetric costs in the fitting process. For example, in some situations false positives may be far less costly than false negatives. Also provided is helpful craft lore such as not automatically ceding data analysis decisions to a fitting algorithm. In many settings, subject-matter knowledge should trump formal fitting criteria. Yet another important message is to appreciate the limitation of one’s data and not apply statistical learning procedures that require more than the data can provide.

The material is written for upper undergraduate level and graduate students in the social and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems. The author uses this book in a course on modern regression for the social, behavioral, and biological sciences. Intuitive explanations and visual representations are prominent. All of the analyses included are done in R with code routinely provided.

Автор: Roiger Название: Data Mining ISBN: 1498763979 ISBN-13(EAN): 9781498763974 Издательство: Taylor&Francis Рейтинг: Цена: 78360 T Наличие на складе: Поставка под заказ. Описание: Data Mining: A Tutorial-Based Primer, Second Edition provides a comprehensive introduction to data mining with a focus on model building and testing, as well as on interpreting and validating results. The text guides students to understand how data mining can be employed to solve real problems and recognize whether a data mining solution is a feasible alternative for a specific problem. Fundamental data mining strategies, techniques, and evaluation methods are presented and implemented with the help of two well-known software tools. Several new topics have been added to the second edition including an introduction to Big Data and data analytics, ROC curves, Pareto lift charts, methods for handling large-sized, streaming and imbalanced data, support vector machines, and extended coverage of textual data mining. The second edition contains tutorials for attribute selection, dealing with imbalanced data, outlier analysis, time series analysis, mining textual data, and more. The text provides in-depth coverage of RapidMiner Studio and Weka’s Explorer interface. Both software tools are used for stepping students through the tutorials depicting the knowledge discovery process. This allows the reader maximum flexibility for their hands-on data mining experience.

Автор: Ratner Bruce Название: Statistical and Machine-Learning Data Mining ISBN: 1439860912 ISBN-13(EAN): 9781439860915 Издательство: Taylor&Francis Рейтинг: Цена: 81110 T Наличие на складе: Поставка под заказ. Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.

Автор: Kohler Название: Data Analysis Using Stata, Third Edition ISBN: 1597181102 ISBN-13(EAN): 9781597181105 Издательство: Taylor&Francis Рейтинг: Цена: 100360 T Наличие на складе: Невозможна поставка. Описание: Data Analysis Using Stata, Third Edition is a comprehensive introduction to both statistical methods and Stata. Beginners will learn the logic of data analysis and interpretation and easily become self-sufficient data analysts. Readers already familiar with Stata will find it an enjoyable resource for picking up new tips and tricks. The book is written as a self-study tutorial and organized around examples. It interactively introduces statistical techniques such as data exploration, description, and regression techniques for continuous and binary dependent variables. Step by step, readers move through the entire process of data analysis and in doing so learn the principles of Stata, data manipulation, graphical representation, and programs to automate repetitive tasks. This third edition includes advanced topics, such as factor-variables notation, average marginal effects, standard errors in complex survey, and multiple imputation in a way, that beginners of both data analysis and Stata can understand. Using data from a longitudinal study of private households, the authors provide examples from the social sciences that are relatable to researchers from all disciplines. The examples emphasize good statistical practice and reproducible research. Readers are encouraged to download the companion package of datasets to replicate the examples as they work through the book. Each chapter ends with exercises to consolidate acquired skills.

Автор: Vapnik Название: The Nature of Statistical Learning Theory ISBN: 0387987800 ISBN-13(EAN): 9780387987804 Издательство: Springer Рейтинг: Цена: 173240 T Наличие на складе: Поставка под заказ. Описание: Discusses the fundamental ideas which lie behind the statistical theory of learning and generalization. This book considers learning as a general problem of function estimation based on empirical data. It concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics.

Автор: Stamp Название: Introduction to Machine Learning with Applications in Information Security ISBN: 1138626783 ISBN-13(EAN): 9781138626782 Издательство: Taylor&Francis Рейтинг: Цена: 78360 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Introduction to Machine Learning with Applications in Information Security provides a class-tested introduction to a wide variety of machine learning algorithms, reinforced through realistic applications. The book is accessible and doesn’t prove theorems, or otherwise dwell on mathematical theory. The goal is to present topics at an intuitive level, with just enough detail to clarify the underlying concepts. The book covers core machine learning topics in-depth, including Hidden Markov Models, Principal Component Analysis, Support Vector Machines, and Clustering. It also includes coverage of Nearest Neighbors, Neural Networks, Boosting and AdaBoost, Random Forests, Linear Discriminant Analysis, Vector Quantization, Naive Bayes, Regression Analysis, Conditional Random Fields, and Data Analysis. Most of the examples in the book are drawn from the field of information security, with many of the machine learning applications specifically focused on malware. The applications presented are designed to demystify machine learning techniques by providing straightforward scenarios. Many of the exercises in this book require some programming, and basic computing concepts are assumed in a few of the application sections. However, anyone with a modest amount of programming experience should have no trouble with this aspect of the book. Instructor resources, including PowerPoint slides, lecture videos, and other relevant materialare provided on an accompanying website: http://www.cs.sjsu.edu/~stamp/ML/. For the reader’s benefit, the figures in the book are also available in electronic form, and in color. About the Author Mark Stamp has been a Professor of Computer Science at San Jose State University since 2002. Prior to that, he worked at the National Security Agency (NSA) for seven years, and a Silicon Valley startup company for two years. He received his Ph.D. from Texas Tech University in 1992. His love affair with machine learning began in the early 1990s, when he was working at the NSA, and continues today at SJSU, where he has supervised vast numbers of master’s student projects, most of which involve a combination of information security and machine learning.

Автор: Nachtsheim;Neter;Kutner Название: Applied Linear Statistical Models with Student CD ISBN: 0071122214 ISBN-13(EAN): 9780071122214 Издательство: McGraw-Hill Рейтинг: Цена: 74240 T Наличие на складе: Поставка под заказ. Описание: "Applied Linear Statistical Models", 5e, is the long established leading authoritative text and reference on statistical modeling. For students in most any discipline where statistical analysis or interpretation is used, ALSM serves as the standard work. The text includes brief introductory and review material, and then proceeds through regression and modeling for the first half, and through ANOVA and Experimental Design in the second half. All topics are presented in a precise and clear style supported with solved examples, numbered formulae, graphic illustrations, and "Notes" to provide depth and statistical accuracy and precision. Applications used within the text and the hallmark problems, exercises, and projects are drawn from virtually all disciplines and fields providing motivation for students in virtually any college. The Fifth edition provides an increased use of computing and graphical analysis throughout, without sacrificing concepts or rigor. In general, the 5e uses larger data sets in examples and exercises, and where methods can be automated within software without loss of understanding, it is so done.

Казахстан, 010000 Нур-султан(Астана) р-он Сарыарка, ул. Маскеу, 40 , офис 202 ТОО "Логобук" Тел:+7(7172) 448953 , +7 707 857-29-98 www.logobook.kz