Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Graph Representation Learning, Hamilton, William L.


Варианты приобретения
Цена: 51230.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 197 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Hamilton, William L.   (Уильям Л. Гамильтон)
Название:  Graph Representation Learning
Перевод названия: Уильям Л. Гамильтон: Обучение представлению графов
ISBN: 9783031004605
Издательство: Springer
Классификация:


ISBN-10: 3031004604
Обложка/Формат: Paperback
Страницы: 141
Вес: 0.32 кг.
Дата издания: 16.09.2020
Серия: Synthesis lectures on artificial intelligence and machine learning
Язык: English
Иллюстрации: Xvii, 141 p.
Размер: 190 x 234 x 14
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.This book provides a synthesis and overview of graph representation learning.

Graph Representation Learning

Автор: Hamilton William L.
Название: Graph Representation Learning
ISBN: 1681739658 ISBN-13(EAN): 9781681739656
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 75770.00 T
Наличие на складе: Невозможна поставка.
Описание:

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.

This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs--a nascent but quickly growing subset of graph representation learning.


Graph-Based Representation and Reasoning

Автор: Haemmerl?
Название: Graph-Based Representation and Reasoning
ISBN: 3319409840 ISBN-13(EAN): 9783319409849
Издательство: Springer
Рейтинг:
Цена: 46590.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the proceedings of the 22th International Conference on Conceptual Structures, ICCS 2016, held in Annecy, France, in July 2016. The 14 full papers and 5 short papers presented in this volume were carefully reviewed and selected from 40 submissions.

Graph Structures for Knowledge Representation and Reasoning: 6th International Workshop, Gkr 2020, Virtual Event, September 5, 2020, Revised Selected

Автор: Cochez Michael, Croitoru Madalina, Marquis Pierre
Название: Graph Structures for Knowledge Representation and Reasoning: 6th International Workshop, Gkr 2020, Virtual Event, September 5, 2020, Revised Selected
ISBN: 3030723070 ISBN-13(EAN): 9783030723071
Издательство: Springer
Цена: 37260.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Extended Workshop Papers.- Active Semantic Relations in Layered Enterprise Architecture Development.- A Belief Update System Using an Event Model for Location of People in a Smart Home.- A Natural Language Generation Technique for Automated Psychotherapy.- Creative Composition Problem: A Knowledge Graph Logical-based AI Construction and Optimization Solution.- Set Visualisations with Euler and Hasse Diagrams.- Usage Patterns Identification Using Graphs and Machine Learning.- Collaborative Design and Manufacture: Information Structures for Team Formation and Coordination.- Invited Additional Contributions.- Approximate Knowledge Graph Query Answering: From Ranking to Binary Classification.- Galois Connections for Patterns: An Algebra of Labelled Graphs.

Graph Structures for Knowledge Representation and Reasoning

Автор: Madalina Croitoru; Sebastian Rudolph; Stefan Woltr
Название: Graph Structures for Knowledge Representation and Reasoning
ISBN: 3319045334 ISBN-13(EAN): 9783319045337
Издательство: Springer
Рейтинг:
Цена: 58690.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the thoroughly refereed post-conference proceedings of the Third International Workshop on Graph Structures for Knowledge Representation and Reasoning, GKR 2013, held in Beijing, China, in August 2013, associated with IJCAI 2013, the 23rd International Joint Conference on Artificial Intelligence.

Graph-Based Representation and Reasoning

Автор: Nathalie Hernandez; Robert J?schke; Madalina Croit
Название: Graph-Based Representation and Reasoning
ISBN: 3319083880 ISBN-13(EAN): 9783319083889
Издательство: Springer
Рейтинг:
Цена: 68010.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the proceedings of the 21st International Conference on Conceptual Structures, ICCS 2014, held in Iasi, Romania, in July 2014.

Graph Structures for Knowledge Representation and Reasoning

Автор: Madalina Croitoru; Pierre Marquis; Sebastian Rudol
Название: Graph Structures for Knowledge Representation and Reasoning
ISBN: 331928701X ISBN-13(EAN): 9783319287010
Издательство: Springer
Рейтинг:
Цена: 37270.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Workshop on Graph Structures for Knowledge Representation and Reasoning, GKR 2015, held in Buenos Aires, Argentina, in July 2015, associated with IJCAI 2015, the 24th International Joint Conference on Artificial Intelligence.

Heterogeneous Graph Representation Learning and Applications

Автор: Shi Chuan, Wang Xiao, Yu Philip S.
Название: Heterogeneous Graph Representation Learning and Applications
ISBN: 9811661650 ISBN-13(EAN): 9789811661655
Издательство: Springer
Рейтинг:
Цена: 149060.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 1. Introduction

1.1 Basic concepts and definitions

1.2 Graph representation

1.3 Heterogeneous graph representation and challenges

1.4 Organization of the book

2. The State-of-the-art of Heterogeneous Graph Representation

2.1 Method taxonomy

2.1.1 Structure-preserved representation

2.1.2 Attribute-assisted representation

2.1.3 Dynamic representation

2.1.4 Application-oriented representation

2.2 Technique summary

2.2.1 Shallow model

2.2.2 Deep model

2.3 Open sources

Part One: Techniques

3. Structure-preserved Heterogeneous Graph Representation

3.1 Meta-path based random walk

3.2 Meta-path based decomposition

3.3 Relation structure awareness

3.4 Network schema preservation

4. Attribute-assisted Heterogeneous Graph Representation

4.1 Heterogeneous graph attention network

4.2 Heterogeneous graph structure learning

5. Dynamic Heterogeneous Graph Representation

5.1 Incremental Learning

5.2 Temporal Interaction

5.3 Sequence Information

6. Supplementary of Heterogeneous Graph Representation

6.1 Adversarial Learning

6.2 Importance Sampling

6.3 Hyperbolic Representation

Part Two: Applications

7. Heterogeneous Graph Representation for Recommendation

7.1 Top-N Recommendation

7.2 Cold-start Recommendation

7.3 Author Set Recommendation

8. Heterogeneous Graph Representation for Text Mining

8.1 Short Text Classification

8.2 News Recommendation with Preference Disentanglement

8.3 News recommendation with long/short-term interest modeling

9. Heterogeneous Graph Representation for Industry Application

9.1 Cash-out User Detection

9.2 Intent Recommendation

9.3 Share Recommendation

9.4 Friend-Enhanced Recommendation

10. Future Research Directions

11. Conclusion


Graph Structures for Knowledge Representation and Reasoning

Автор: Croitoru
Название: Graph Structures for Knowledge Representation and Reasoning
ISBN: 3319781014 ISBN-13(EAN): 9783319781013
Издательство: Springer
Рейтинг:
Цена: 39130.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the thoroughly refereed post-conference proceedings of the 5th International Workshop on Graph Structures for Knowledge Representation and Reasoning, GKR 2017, held in Melbourne, VIC, Australia, in August 2017, associated with IJCAI 2017, the 26th International Joint Conference on Artificial Intelligence.

Graph-Based Representation and Reasoning: 26th International Conference on Conceptual Structures, ICCS 2021, Virtual Event, September 20-22, 2021, Pro

Автор: Braun Tanya, Gehrke Marcel, Hanika Tom
Название: Graph-Based Representation and Reasoning: 26th International Conference on Conceptual Structures, ICCS 2021, Virtual Event, September 20-22, 2021, Pro
ISBN: 3030869814 ISBN-13(EAN): 9783030869816
Издательство: Springer
Рейтинг:
Цена: 69870.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the proceedings of the 26th International Conference on Conceptual Structures, ICCS 2021, held virtually in September 2021.The 12 full papers and 4 short papers presented were carefully reviewed and selected from 25 submissions. theory on conceptual structures, and mining conceptual structures.

Heterogeneous Graph Representation Learning and Applications

Автор: Shi
Название: Heterogeneous Graph Representation Learning and Applications
ISBN: 9811661685 ISBN-13(EAN): 9789811661686
Издательство: Springer
Рейтинг:
Цена: 149060.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Representation learning in heterogeneous graphs (HG) is intended to provide a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the need to incorporate heterogeneous structural (graph) information consisting of multiple types of node and edge, but also the need to consider heterogeneous attributes or types of content (e.g. text or image) associated with each node. Although considerable advances have been made in homogeneous (and heterogeneous) graph embedding, attributed graph embedding and graph neural networks, few are capable of simultaneously and effectively taking into account heterogeneous structural (graph) information as well as the heterogeneous content information of each node. In this book, we provide a comprehensive survey of current developments in HG representation learning. More importantly, we present the state-of-the-art in this field, including theoretical models and real applications that have been showcased at the top conferences and journals, such as TKDE, KDD, WWW, IJCAI and AAAI. The book has two major objectives: (1) to provide researchers with an understanding of the fundamental issues and a good point of departure for working in this rapidly expanding field, and (2) to present the latest research on applying heterogeneous graphs to model real systems and learning structural features of interaction systems. To the best of our knowledge, it is the first book to summarize the latest developments and present cutting-edge research on heterogeneous graph representation learning. To gain the most from it, readers should have a basic grasp of computer science, data mining and machine learning.

Graph-based Knowledge Representation

Автор: Michel Chein; Marie-Laure Mugnier
Название: Graph-based Knowledge Representation
ISBN: 1849967695 ISBN-13(EAN): 9781849967693
Издательство: Springer
Рейтинг:
Цена: 135090.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In addressing the question of how far it is possible to go in knowledge representation and reasoning through graphs, the authors cover basic conceptual graphs, computational aspects, and kernel extensions. The basic mathematical notions are summarized.

Graph-Based Representation and Reasoning

Автор: Chapman
Название: Graph-Based Representation and Reasoning
ISBN: 3319913786 ISBN-13(EAN): 9783319913780
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the proceedings of the 23rd International Conference on Conceptual Structures, ICCS 2018, held in Edinburgh, UK, in June 2018. The 10 full papers, 2 short papers and 2 posters presented were carefully reviewed and selected from 21 submissions. computer- human interaction and human cognition;


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия