Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Heterogeneous Graph Representation Learning and Applications, Shi


Варианты приобретения
Цена: 149060.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 214 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Shi
Название:  Heterogeneous Graph Representation Learning and Applications
ISBN: 9789811661686
Издательство: Springer
Классификация:



ISBN-10: 9811661685
Обложка/Формат: Soft cover
Страницы: 318
Вес: 0.52 кг.
Дата издания: 15.02.2023
Серия: Artificial Intelligence: Foundations, Theory, and Algorithms
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 40 tables, color; 1 illustrations, black and white; xx, 318 p. 1 illus.
Размер: 235 x 155
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Representation learning in heterogeneous graphs (HG) is intended to provide a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the need to incorporate heterogeneous structural (graph) information consisting of multiple types of node and edge, but also the need to consider heterogeneous attributes or types of content (e.g. text or image) associated with each node. Although considerable advances have been made in homogeneous (and heterogeneous) graph embedding, attributed graph embedding and graph neural networks, few are capable of simultaneously and effectively taking into account heterogeneous structural (graph) information as well as the heterogeneous content information of each node. In this book, we provide a comprehensive survey of current developments in HG representation learning. More importantly, we present the state-of-the-art in this field, including theoretical models and real applications that have been showcased at the top conferences and journals, such as TKDE, KDD, WWW, IJCAI and AAAI. The book has two major objectives: (1) to provide researchers with an understanding of the fundamental issues and a good point of departure for working in this rapidly expanding field, and (2) to present the latest research on applying heterogeneous graphs to model real systems and learning structural features of interaction systems. To the best of our knowledge, it is the first book to summarize the latest developments and present cutting-edge research on heterogeneous graph representation learning. To gain the most from it, readers should have a basic grasp of computer science, data mining and machine learning.
Дополнительное описание: Introduction.- The State-of-the-art of Heterogeneous Graph Representation.- Part One: Techniques.- Structure-preserved Heterogeneous Graph Representation.- Attribute-assisted Heterogeneous Graph Representation.- Dynamic Heterogeneous Graph Representation.


Graph Representation Learning

Автор: Hamilton, William L.
Название: Graph Representation Learning
ISBN: 3031004604 ISBN-13(EAN): 9783031004605
Издательство: Springer
Рейтинг:
Цена: 51230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.This book provides a synthesis and overview of graph representation learning.

Graph-based Knowledge Representation

Автор: Michel Chein; Marie-Laure Mugnier
Название: Graph-based Knowledge Representation
ISBN: 1849967695 ISBN-13(EAN): 9781849967693
Издательство: Springer
Рейтинг:
Цена: 135090.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In addressing the question of how far it is possible to go in knowledge representation and reasoning through graphs, the authors cover basic conceptual graphs, computational aspects, and kernel extensions. The basic mathematical notions are summarized.

Efficient Integration of 5G and Beyond Heterogeneous Networks

Автор: by Zi-Yang Wu
Название: Efficient Integration of 5G and Beyond Heterogeneous Networks
ISBN: 9811569371 ISBN-13(EAN): 9789811569371
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book discusses the smooth integration of optical and RF networks in 5G and beyond (5G+) heterogeneous networks (HetNets), covering both planning and operational aspects.

Multimedia Ontology

Автор: Chaudhury, Santanu , Mallik, Anupama , Ghosh, Hi
Название: Multimedia Ontology
ISBN: 0367445824 ISBN-13(EAN): 9780367445829
Издательство: Taylor&Francis
Рейтинг:
Цена: 63280.00 T
Наличие на складе: Нет в наличии.
Описание:

The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled.

The book contains information that helps with building semantic, content-based search and retrieval engines and also with developing vertical application-specific search applications. It guides you in designing multimedia tools that aid in logical and conceptual organization of large amounts of multimedia data. As a practical demonstration, it showcases multimedia applications in cultural heritage preservation efforts and the creation of virtual museums.

The book describes the limitations of existing ontology techniques in semantic multimedia data processing, as well as some open problems in the representations and applications of multimedia ontology. As an antidote, it introduces new ontology representation and reasoning schemes that overcome these limitations. The long, compiled efforts reflected in Multimedia Ontology: Representation and Applications are a signpost for new achievements and developments in efficiency and accessibility in the field.


Representation in Machine Learning

Автор: Murty
Название: Representation in Machine Learning
ISBN: 9811979073 ISBN-13(EAN): 9789811979071
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a concise but comprehensive guide to representation, which forms the core of Machine Learning (ML). State-of-the-art practical applications involve a number of challenges for the analysis of high-dimensional data. Unfortunately, many popular ML algorithms fail to perform, in both theory and practice, when they are confronted with the huge size of the underlying data. Solutions to this problem are aptly covered in the book. In addition, the book covers a wide range of representation techniques that are important for academics and ML practitioners alike, such as Locality Sensitive Hashing (LSH), Distance Metrics and Fractional Norms, Principal Components (PCs), Random Projections and Autoencoders. Several experimental results are provided in the book to demonstrate the discussed techniques’ effectiveness.

Representation Learning

Автор: Lavra?
Название: Representation Learning
ISBN: 3030688194 ISBN-13(EAN): 9783030688196
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph addresses advances in representation learning, a cutting-edge research area of machine learning.

Prediction and Analysis for Knowledge Representation and Machine Learning

Автор: Kumar Avadhesh, Sagar Shrddha, Kumar T. Ganesh
Название: Prediction and Analysis for Knowledge Representation and Machine Learning
ISBN: 0367649101 ISBN-13(EAN): 9780367649104
Издательство: Taylor&Francis
Рейтинг:
Цена: 137810.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book illustrates different techniques and structures that are used in knowledge representation and machine learning. The aim of this book is to draw the attention of graduates, researchers and practitioners working in field of information technology and computer science (in knowledge representation in machine learning).

Representation Learning for Natural Language Processing

Автор: Liu Zhiyuan, Lin Yankai, Sun Maosong
Название: Representation Learning for Natural Language Processing
ISBN: 9811555753 ISBN-13(EAN): 9789811555756
Издательство: Springer
Рейтинг:
Цена: 37260.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 1. ​Representation Learning and NLP.- 2. Word Representation.- 3. Compositional Semantics.- 4. Sentence Representation.- 5. Document Representation.- 6. Sememe Knowledge Representation.- 7. World Knowledge Representation.- 8. Network Representation.- 9. Cross-Modal Representation.- 10. Resources.- 11. Outlook.

Robust Representation for Data Analytics

Автор: Sheng Li; Yun Fu
Название: Robust Representation for Data Analytics
ISBN: 3319867962 ISBN-13(EAN): 9783319867960
Издательство: Springer
Рейтинг:
Цена: 111790.00 T
Наличие на складе: Поставка под заказ.

Domain Adaptation and Representation Transfer

Автор: Kamnitsas
Название: Domain Adaptation and Representation Transfer
ISBN: 3031168518 ISBN-13(EAN): 9783031168512
Издательство: Springer
Рейтинг:
Цена: 51230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the 4th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2022, held in conjunction with MICCAI 2022, in September 2022. DART 2022 accepted 13 papers from the 25 submissions received. The workshop aims at creating a discussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains.

Representation Theorems in Computer Science: A Treatment in Logic Engineering

Автор: Цzзep Цzgьr Lьtfь
Название: Representation Theorems in Computer Science: A Treatment in Logic Engineering
ISBN: 3030257878 ISBN-13(EAN): 9783030257873
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 1 Introduction.- 2 Preliminaries.- 3 Representing Spatial Relatedness.- 4 Scalable Spatio-Thematic Query Answering.- 5 Representation Theorems for Stream Processing.- 6 High-Level Declarative Stream Processing.- 7 Representation for Belief Revision.- 8 Conclusion.

Representation Learning for Natural Language Processing

Автор: Liu Zhiyuan, Lin Yankai, Sun Maosong
Название: Representation Learning for Natural Language Processing
ISBN: 9811555729 ISBN-13(EAN): 9789811555725
Издательство: Springer
Рейтинг:
Цена: 37260.00 T
Наличие на складе: Поставка под заказ.
Описание: 1. ​Representation Learning and NLP.- 2. Word Representation.- 3. Compositional Semantics.- 4. Sentence Representation.- 5. Document Representation.- 6. Sememe Knowledge Representation.- 7. World Knowledge Representation.- 8. Network Representation.- 9. Cross-Modal Representation.- 10. Resources.- 11. Outlook.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия