Explainable Natural Language Processing, Sogaard, Anders
Автор: Rothman Denis Название: Hands-On Explainable AI (XAI) with Python: Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps ISBN: 1800208138 ISBN-13(EAN): 9781800208131 Издательство: Неизвестно Рейтинг: Цена: 67430.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: In today`s era of AI, accurately interpreting and communicating trustworthy, fair, and secure AI findings have become a crucial skill to master. This book bridges the gap between AI`s pitfalls and potential by helping you build the ability to leverage machine learning with Python to visualize and integrate AI.
Автор: Dombi Jуzsef, Csiszбr Orsolya Название: Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools ISBN: 3030722821 ISBN-13(EAN): 9783030722821 Издательство: Springer Рейтинг: Цена: 139750.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable - and even, in many cases, more efficient.
This book focuses on an overview of the AI techniques, their foundations, their applications, and remaining challenges and open problems. Many artificial intelligence (AI) techniques do not explain their recommendations. Providing natural-language explanations for numerical AI recommendations is one of the main challenges of modern AI. To provide such explanations, a natural idea is to use techniques specifically designed to relate numerical recommendations and natural-language descriptions, namely fuzzy techniques.
This book is of interest to practitioners who want to use fuzzy techniques to make AI applications explainable, to researchers who may want to extend the ideas from these papers to new application areas, and to graduate students who are interested in the state-of-the-art of fuzzy techniques and of explainable AI--in short, to anyone who is interested in problems involving fuzziness and AI in general.
Автор: Rutkowski Название: Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance ISBN: 3030755231 ISBN-13(EAN): 9783030755232 Издательство: Springer Рейтинг: Цена: 149060.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The book proposes techniques, with an emphasis on the financial sector, which will make recommendation systems both accurate and explainable. However, in many applications, e.g., medical diagnosis or venture capital investment recommendations, it is essential to explain the rationale behind AI systems decisions or recommendations.
Автор: Calvaresi Davide, Najjar Amro, Winikoff Michael Название: Explainable and Transparent AI and Multi-Agent Systems: Third International Workshop, Extraamas 2021, Virtual Event, May 3-7, 2021, Revised Selected P ISBN: 3030820165 ISBN-13(EAN): 9783030820169 Издательство: Springer Цена: 79190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book constitutes the proceedings of the Third International Workshop on Explainable, Transparent AI and Multi-Agent Systems, EXTRAAMAS 2021, which was held virtually due to the COVID-19 pandemic. The 19 long revised papers and 1 short contribution were carefully selected from 32 submissions.
Автор: Mar Marcos; Jose M. Juarez; Richard Lenz; Grzegorz Название: Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems ISBN: 3030374459 ISBN-13(EAN): 9783030374457 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book constitutes revised selected papers from the AIME 2019 workshops KR4HC/ProHealth 2019, the Workshop on Knowledge Representation for Health Care and Process-Oriented Information Systems in Health Care, and TEAAM 2019, the Workshop on Transparent, Explainable and Affective AI in Medical Systems.
Автор: Singh, Java Название: Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligence (RAI) ISBN: 9811914753 ISBN-13(EAN): 9789811914751 Издательство: Springer Рейтинг: Цена: 167700.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The book discusses Explainable (XAI) and Responsive Artificial Intelligence (RAI) for biomedical and healthcare applications. The book explains both positive as well as negative findings obtained by explainable AI techniques.
Автор: Gaur Название: Explainable Artificial Intelligence for Intelligent Transportation Systems ISBN: 3031096436 ISBN-13(EAN): 9783031096433 Издательство: Springer Рейтинг: Цена: 149060.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Transportation typically entails crucial “life-death” choices, delegating crucial decisions to an AI algorithm without any explanation poses a serious threat. Hence, explainability and responsible AI is crucial in the context of intelligent transportation. In Intelligence Transportation System (ITS) implementations such as traffic management systems and autonomous driving applications, AI-based control mechanisms are gaining prominence. Explainable artificial intelligence for intelligent transportation system tackling certain challenges in the field of autonomous vehicle, traffic management system, data integration and analytics and monitor the surrounding environment. The book discusses and inform researchers on explainable Intelligent Transportation system. It also discusses prospective methods and techniques for enabling the interpretability of transportation systems. The book further focuses on ethical considerations apart from technical considerations.
Автор: Zhou Jianlong, Chen Fang Название: Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent ISBN: 3030080072 ISBN-13(EAN): 9783030080075 Издательство: Springer Рейтинг: Цена: 60550.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: With an evolutionary advancement of Machine Learning (ML) algorithms, a rapid increase of data volumes and a significant improvement of computation powers, machine learning becomes hot in different applications. However, because of the nature of “black-box” in ML methods, ML still needs to be interpreted to link human and machine learning for transparency and user acceptance of delivered solutions. This edited book addresses such links from the perspectives of visualisation, explanation, trustworthiness and transparency. The book establishes the link between human and machine learning by exploring transparency in machine learning, visual explanation of ML processes, algorithmic explanation of ML models, human cognitive responses in ML-based decision making, human evaluation of machine learning and domain knowledge in transparent ML applications.This is the first book of its kind to systematically understand the current active research activities and outcomes related to human and machine learning. The book will not only inspire researchers to passionately develop new algorithms incorporating human for human-centred ML algorithms, resulting in the overall advancement of ML, but also help ML practitioners proactively use ML outputs for informative and trustworthy decision making.This book is intended for researchers and practitioners involved with machine learning and its applications. The book will especially benefit researchers in areas like artificial intelligence, decision support systems and human-computer interaction.
Автор: Markus Kr?tzsch; Daria Stepanova Название: Reasoning Web. Explainable Artificial Intelligence ISBN: 3030314227 ISBN-13(EAN): 9783030314224 Издательство: Springer Рейтинг: Цена: 54030.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This volume contains lecture notes of the 15th Reasoning Web Summer School (RW 2019), held in Bolzano, Italy, in September 2019. The research areas of Semantic Web, Linked Data, and Knowledge Graphs have recently received a lot of attention in academia and industry. Since its inception in 2001, the Semantic Web has aimed at enriching the existing Web with meta-data and processing methods, so as to provide Web-based systems with intelligent capabilities such as context awareness and decision support. The Semantic Web vision has been driving many community efforts which have invested a lot of resources in developing vocabularies and ontologies for annotating their resources semantically. Besides ontologies, rules have long been a central part of the Semantic Web framework and are available as one of its fundamental representation tools, with logic serving as a unifying foundation. Linked Data is a related research area which studies how one can make RDF data available on the Web and interconnect it with other data with the aim of increasing its value for everybody. Knowledge Graphs have been shown useful not only for Web search (as demonstrated by Google, Bing, etc.) but also in many application domains.
Автор: Raval, Mehul S Название: Explainable AI in Healthcare ISBN: 1032367113 ISBN-13(EAN): 9781032367118 Издательство: Taylor&Francis Рейтинг: Цена: 100030.00 T Наличие на складе: Есть у поставщика Поставка под заказ.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz