Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Reasoning Web. Explainable Artificial Intelligence, Markus Kr?tzsch; Daria Stepanova


Варианты приобретения
Цена: 54030.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 177 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Markus Kr?tzsch; Daria Stepanova
Название:  Reasoning Web. Explainable Artificial Intelligence
ISBN: 9783030314224
Издательство: Springer
Классификация:





ISBN-10: 3030314227
Обложка/Формат: Soft cover
Страницы: 283
Вес: 0.46 кг.
Дата издания: 2019
Серия: Information Systems and Applications, incl. Internet/Web, and HCI
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 23 illustrations, color; 343 illustrations, black and white; xi, 283 p. 366 illus., 23 illus. in color.
Размер: 234 x 156 x 16
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: 15th International Summer School 2019, Bolzano, Italy, September 20–24, 2019, Tutorial Lectures
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This volume contains lecture notes of the 15th Reasoning Web Summer School (RW 2019), held in Bolzano, Italy, in September 2019. The research areas of Semantic Web, Linked Data, and Knowledge Graphs have recently received a lot of attention in academia and industry. Since its inception in 2001, the Semantic Web has aimed at enriching the existing Web with meta-data and processing methods, so as to provide Web-based systems with intelligent capabilities such as context awareness and decision support. The Semantic Web vision has been driving many community efforts which have invested a lot of resources in developing vocabularies and ontologies for annotating their resources semantically. Besides ontologies, rules have long been a central part of the Semantic Web framework and are available as one of its fundamental representation tools, with logic serving as a unifying foundation. Linked Data is a related research area which studies how one can make RDF data available on the Web and interconnect it with other data with the aim of increasing its value for everybody. Knowledge Graphs have been shown useful not only for Web search (as demonstrated by Google, Bing, etc.) but also in many application domains.
Дополнительное описание: Classical Algorithms for Reasoning and Explanation in Description Logics.- Explanation-Friendly Query Answering Under Uncertainty.- Provenance in Databases: Principles and Applications.- Knowledge Representation and Rule Mining in Entity-Centric Knowledge


Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Автор: Wojciech Samek; Gr?goire Montavon; Andrea Vedaldi;
Название: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
ISBN: 3030289532 ISBN-13(EAN): 9783030289539
Издательство: Springer
Рейтинг:
Цена: 68930.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner.The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

Artificial Intelligence for Games

Автор: Millington, Ian, Funge, John
Название: Artificial Intelligence for Games
ISBN: 0123747317 ISBN-13(EAN): 9780123747310
Издательство: Taylor&Francis
Рейтинг:
Цена: 72470.00 T
Наличие на складе: Нет в наличии.
Описание: Creating robust artificial intelligence is one of the greatest challenges for game developers, yet the commercial success of a game is often dependent upon the quality of the AI. In this book, Ian Millington brings extensive professional experience to the problem of improving the quality of AI in games. He describes numerous examples from real games and explores the underlying ideas through detailed case studies. He goes further to introduce many techniques little used by developers today. The book's associated web site contains a library of C++ source code and demonstration programs, and a complete commercial source code library of AI algorithms and techniques.<br><br>"Artificial Intelligence for Games - 2nd edition" will be highly useful to academics teaching courses on game AI, in that it includes exercises with each chapter. It will also include new and expanded coverage of the following: AI-oriented gameplay; Behavior driven AI; Casual games (puzzle games). <br><br>* The first comprehensive, professional tutorial and reference to implement true AI in games written by an engineer with extensive industry experience.<br>* Walks through the entire development process from beginning to end.<br>* Includes examples from over 100 real games, 10 in-depth case studies, and web site with sample code.

Artificial Intelligence, Automated Reasoning, and Symbolic Computation

Автор: Jacques Calmet; Belaid Benhamou; Olga Caprotti; La
Название: Artificial Intelligence, Automated Reasoning, and Symbolic Computation
ISBN: 3540438653 ISBN-13(EAN): 9783540438656
Издательство: Springer
Рейтинг:
Цена: 74530.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Constitutes the proceedings of the joint International Conferences on Artificial Intelligence and Symbolic Computation, and Calculemus 2002, held in France in 2002. The 24 papers cover automated theorem proving, logical reasoning, mathematical modeling, algebraic computations and more.

Logic for Programming, Artificial Intelligence, and Reasoning

Автор: Matthias Baaz; Andrei Voronkov
Название: Logic for Programming, Artificial Intelligence, and Reasoning
ISBN: 3540000100 ISBN-13(EAN): 9783540000105
Издательство: Springer
Рейтинг:
Цена: 83850.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Compiled from the proceedings of the 9th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, this volume contains 30 papers. Among the topics covered are constraint programming, formal software enginering, formal verification, resolution and proof planning.

Goal-based Reasoning for Argumentation

Автор: Walton
Название: Goal-based Reasoning for Argumentation
ISBN: 1107119049 ISBN-13(EAN): 9781107119048
Издательство: Cambridge Academ
Рейтинг:
Цена: 84470.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Practical argumentation is intelligent reasoning from an agent`s goals and known circumstances, and from an action selected as a means, to arrive at a decision on what action to take. This book will appeal to a wide audience, from designers of multi-agent and robotics systems to social scientists.

Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms

Автор: Rina Dechter
Название: Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms
ISBN: 1681734907 ISBN-13(EAN): 9781681734903
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 72070.00 T
Наличие на складе: Нет в наличии.
Описание: Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art. This book provides comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. The new edition includes the notion of influence diagrams, which focus on sequential decision making under uncertainty. We believe the principles outlined in the book would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond.

Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms

Автор: Rina Dechter
Название: Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms
ISBN: 1681734923 ISBN-13(EAN): 9781681734927
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 93330.00 T
Наличие на складе: Нет в наличии.
Описание: Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art. This book provides comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. The new edition includes the notion of influence diagrams, which focus on sequential decision making under uncertainty. We believe the principles outlined in the book would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond.

Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems

Автор: Mar Marcos; Jose M. Juarez; Richard Lenz; Grzegorz
Название: Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems
ISBN: 3030374459 ISBN-13(EAN): 9783030374457
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes revised selected papers from the AIME 2019 workshops KR4HC/ProHealth 2019, the Workshop on Knowledge Representation for Health Care and Process-Oriented Information Systems in Health Care, and TEAAM 2019, the Workshop on Transparent, Explainable and Affective AI in Medical Systems.

Explainable and Interpretable Models in Computer Vision and Machine Learning

Автор: Hugo Jair Escalante; Sergio Escalera; Isabelle Guy
Название: Explainable and Interpretable Models in Computer Vision and Machine Learning
ISBN: 3319981307 ISBN-13(EAN): 9783319981307
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning· Explanation Methods in Deep Learning· Learning Functional Causal Models with Generative Neural Networks· Learning Interpreatable Rules for Multi-Label Classification· Structuring Neural Networks for More Explainable Predictions· Generating Post Hoc Rationales of Deep Visual Classification Decisions· Ensembling Visual Explanations· Explainable Deep Driving by Visualizing Causal Attention· Interdisciplinary Perspective on Algorithmic Job Candidate Search· Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations

Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent

Автор: Zhou Jianlong, Chen Fang
Название: Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent
ISBN: 3030080072 ISBN-13(EAN): 9783030080075
Издательство: Springer
Рейтинг:
Цена: 60550.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: With an evolutionary advancement of Machine Learning (ML) algorithms, a rapid increase of data volumes and a significant improvement of computation powers, machine learning becomes hot in different applications. However, because of the nature of “black-box” in ML methods, ML still needs to be interpreted to link human and machine learning for transparency and user acceptance of delivered solutions. This edited book addresses such links from the perspectives of visualisation, explanation, trustworthiness and transparency. The book establishes the link between human and machine learning by exploring transparency in machine learning, visual explanation of ML processes, algorithmic explanation of ML models, human cognitive responses in ML-based decision making, human evaluation of machine learning and domain knowledge in transparent ML applications.This is the first book of its kind to systematically understand the current active research activities and outcomes related to human and machine learning. The book will not only inspire researchers to passionately develop new algorithms incorporating human for human-centred ML algorithms, resulting in the overall advancement of ML, but also help ML practitioners proactively use ML outputs for informative and trustworthy decision making.This book is intended for researchers and practitioners involved with machine learning and its applications. The book will especially benefit researchers in areas like artificial intelligence, decision support systems and human-computer interaction.

Explainable, Transparent Autonomous Agents and Multi-Agent Systems

Автор: Davide Calvaresi; Amro Najjar; Michael Schumacher;
Название: Explainable, Transparent Autonomous Agents and Multi-Agent Systems
ISBN: 303030390X ISBN-13(EAN): 9783030303907
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the proceedings of the First International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems, EXTRAAMAS 2019, held in Montreal, Canada, in May 2019. The 12 revised and extended papers presented were carefully selected from 23 submissions. explainable agent simulations;

An Introduction to Constraint-Based Temporal Reasoning

Автор: Roman Bartak, Robert A. Morris, K. Brent Venable
Название: An Introduction to Constraint-Based Temporal Reasoning
ISBN: 1608459675 ISBN-13(EAN): 9781608459674
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 41580.00 T
Наличие на складе: Невозможна поставка.
Описание: Solving challenging computational problems involving time has been a critical component in the development of artificial intelligence systems almost since the inception of the field. This book provides a concise introduction to the core computational elements of temporal reasoning for use in AI systems for planning and scheduling, as well as systems that extract temporal information from data.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия