Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Reinforcement Learning From Scratch, Lorenz


Варианты приобретения
Цена: 55890.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 164 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Lorenz
Название:  Reinforcement Learning From Scratch
ISBN: 9783031090295
Издательство: Springer
Классификация:



ISBN-10: 3031090292
Обложка/Формат: Hardback
Страницы: 184
Вес: 0.47 кг.
Дата издания: 11.11.2022
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 63 illustrations, color; 11 illustrations, black and white; xiv, 184 p. 74 illus., 63 illus. in color.
Размер: 235 x 155
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: Understanding current approaches - with examples in java and greenfoot
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: In ancient games such as chess or go, the most brilliant players can improve by studying the strategies produced by a machine. Robotic systems practice their own movements. In arcade games, agents capable of learning reach superhuman levels within a few hours. How do these spectacular reinforcement learning algorithms work? With easy-to-understand explanations and clear examples in Java and Greenfoot, you can acquire the principles of reinforcement learning and apply them in your own intelligent agents. Greenfoot (M.K?lling, Kings College London) and the hamster model (D. Bohles, University of Oldenburg) are simple but also powerful didactic tools that were developed to convey basic programming concepts. The result is an accessible introduction into machine learning that concentrates on reinforcement learning. Taking the reader through the steps of developing intelligent agents, from the very basics to advanced aspects, touching on a variety of machine learning algorithms along the way, one is allowed to play along, experiment, and add their own ideas and experiments.
Дополнительное описание: 1 Reinforcement learning as subfield of machine learning.- 2 Basic concepts of reinforcement learning.- 3 Optimal decision-making in a known environment.- 4 decision making and learning in an unknown environment.- 5 Artificial Neural Networks as estimator


Reinforcement Learning for Sequential Decision and Optimal Control

Автор: Shengbo Eben Li
Название: Reinforcement Learning for Sequential Decision and Optimal Control
ISBN: 9811977836 ISBN-13(EAN): 9789811977831
Издательство: Springer
Рейтинг:
Цена: 74530.00 T
Наличие на складе: Поставка под заказ.
Описание: Have you ever wondered how AlphaZero learns to defeat the top human Go players? Do you have any clues about how an autonomous driving system can gradually develop self-driving skills beyond normal drivers? What is the key that enables AlphaStar to make decisions in Starcraft, a notoriously difficult strategy game that has partial information and complex rules? The core mechanism underlying those recent technical breakthroughs is reinforcement learning (RL), a theory that can help an agent to develop the self-evolution ability through continuing environment interactions. In the past few years, the AI community has witnessed phenomenal success of reinforcement learning in various fields, including chess games, computer games and robotic control. RL is also considered to be a promising and powerful tool to create general artificial intelligence in the future. As an interdisciplinary field of trial-and-error learning and optimal control, RL resembles how humans reinforce their intelligence by interacting with the environment and provides a principled solution for sequential decision making and optimal control in large-scale and complex problems. Since RL contains a wide range of new concepts and theories, scholars may be plagued by a number of questions: What is the inherent mechanism of reinforcement learning? What is the internal connection between RL and optimal control? How has RL evolved in the past few decades, and what are the milestones? How do we choose and implement practical and effective RL algorithms for real-world scenarios? What are the key challenges that RL faces today, and how can we solve them? What is the current trend of RL research? You can find answers to all those questions in this book. The purpose of the book is to help researchers and practitioners take a comprehensive view of RL and understand the in-depth connection between RL and optimal control. The book includes not only systematic and thorough explanations of theoretical basics but also methodical guidance of practical algorithm implementations. The book intends to provide a comprehensive coverage of both classic theories and recent achievements, and the content is carefully and logically organized, including basic topics such as the main concepts and terminologies of RL, Markov decision process (MDP), Bellman’s optimality condition, Monte Carlo learning, temporal difference learning, stochastic dynamic programming, function approximation, policy gradient methods, approximate dynamic programming, and deep RL, as well as the latest advances in action and state constraints, safety guarantee, reference harmonization, robust RL, partially observable MDP, multiagent RL, inverse RL, offline RL, and so on.

Model-based reinforcement learning :

Автор: Farsi, Milad,
Название: Model-based reinforcement learning :
ISBN: 111980857X ISBN-13(EAN): 9781119808572
Издательство: Wiley
Рейтинг:
Цена: 108770.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is for researchers and students in statistics, data mining, computer science, machine learning, marketing and also practitioners who implement recommender systems. It provides an in-depth discussion of challenges encountered in deploying real-life large-scale systems and state-of-the-art solutions in personalization, explore/exploit, dimension reduction and multi-objective optimization.

Reinforcement learning

Автор: Sutton, Richard S. Barto, Andrew G.
Название: Reinforcement learning
ISBN: 0262193981 ISBN-13(EAN): 9780262193986
Издательство: MIT Press
Рейтинг:
Цена: 66930.00 T
Наличие на складе: Нет в наличии.
Описание: An account of key ideas and algorithms in reinforcement learning. The discussion ranges from the history of the field`s intellectual foundations to recent developments and applications. Areas studied include reinforcement learning problems in terms of Markov decision problems and solution methods.

Reinforcement learning algorithms with python

Автор: Lonza, Andrea
Название: Reinforcement learning algorithms with python
ISBN: 1789131111 ISBN-13(EAN): 9781789131116
Издательство: Неизвестно
Рейтинг:
Цена: 47810.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: With this book, you will understand the core concepts and techniques of reinforcement learning. You will take a look into each RL algorithm and will develop your own self-learning algorithms and models. You will optimize the algorithms for better precision, use high-speed actions and lower the risk of anomalies in your applications.

Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies

Автор: Li, Chong
Название: Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies
ISBN: 1138543535 ISBN-13(EAN): 9781138543539
Издательство: Taylor&Francis
Рейтинг:
Цена: 84710.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.

Reinforcement Learning with Tensorflow

Автор: Dutta Sayon
Название: Reinforcement Learning with Tensorflow
ISBN: 1788835727 ISBN-13(EAN): 9781788835725
Издательство: Неизвестно
Цена: 67430.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reinforcement learning allows you to develop intelligent, self-learning systems. This book shows you how to put the concepts of Reinforcement Learning to train efficient models.You will use popular reinforcement learning algorithms to implement use-cases in image processing and NLP, by combining the power of TensorFlow and OpenAI Gym.

Reinforcement Learning

Автор: Xiao
Название: Reinforcement Learning
ISBN: 9811949328 ISBN-13(EAN): 9789811949326
Издательство: Springer
Рейтинг:
Цена: 69870.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reinforcement Learning: Theory and Python Implementation is a tutorial book on reinforcement learning, with explanations of both theory and applications. Starting from a uniform mathematical framework, this book derives the theory of modern reinforcement learning in a systematic way and introduces all mainstream reinforcement learning algorithms including both classical reinforcement learning algorithms such as eligibility trace and deep reinforcement learning algorithms such as PPO, SAC, and MuZero. Every chapter is accompanied by high-quality implementations based on the latest version of Python packages such as Gym, and the implementations of deep reinforcement learning algorithms are all with both TensorFlow 2 and PyTorch 1. All codes can be found on GitHub along with their results and are runnable on a conventional laptop with either Windows, macOS, or Linux. This book is intended for readers who want to learn reinforcement learning systematically and apply reinforcement learning to practical applications. It is also ideal to academical researchers who seek theoretical foundation or algorithm enhancement in their cutting-edge AI research.

R Machine Learning Projects

Автор: Chinnamgari Sunil Kumar
Название: R Machine Learning Projects
ISBN: 1789807948 ISBN-13(EAN): 9781789807943
Издательство: Неизвестно
Рейтинг:
Цена: 53940.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The purpose of the book is to help a machine learning practitioner gets hands-on experience in working with real-world data and apply modern machine learning algorithms. You will learn to implement each algorithm to a specific industry problem. It covers projects involving both supervised as well as unsupervised learning approaches.

Hands-On Reinforcement Learning for Games

Автор: Lanham Micheal
Название: Hands-On Reinforcement Learning for Games
ISBN: 1839214937 ISBN-13(EAN): 9781839214936
Издательство: Неизвестно
Рейтинг:
Цена: 53940.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The AI revolution is here and it is embracing games. Game developers are being challenged to enlist cutting edge AI as part of their games. In this book, you will look at the journey of building capable AI using reinforcement learning algorithms and techniques. You will learn to solve complex tasks and build next-generation games using a ...

Hands-on reinforcement learning with python -

Автор: Ravichandiran, Sudharsan
Название: Hands-on reinforcement learning with python -
ISBN: 1839210680 ISBN-13(EAN): 9781839210686
Издательство: Неизвестно
Рейтинг:
Цена: 60070.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Deep Reinforcement Learning with Python - Second Edition will help you learn reinforcement learning algorithms, techniques and architectures - including deep reinforcement learning - from scratch. This new edition is an extensive update of the original, reflecting the state-of-the-art latest thinking in reinforcement learning.

Risk-Sensitive Reinforcement Learning Via Policy Gradient Search

Автор: Michael C. Fu, Prashanth L. A.
Название: Risk-Sensitive Reinforcement Learning Via Policy Gradient Search
ISBN: 1638280266 ISBN-13(EAN): 9781638280262
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 96090.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reinforcement learning (RL) is one of the foundational pillars of artificial intelligence and machine learning. An important consideration in any optimization or control problem is the notion of risk, but its incorporation into RL has been a recent development. This monograph surveys research on risk-sensitive RL that uses policy gradient search.

Hands-On Deep Learning for Games

Автор: Lanham Micheal
Название: Hands-On Deep Learning for Games
ISBN: 1788994078 ISBN-13(EAN): 9781788994071
Издательство: Неизвестно
Рейтинг:
Цена: 53940.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book will give you an in-depth view of the potential of deep learning and neural networks in game development. You will also learn to use neural nets combined with reinforcement learning for new types of game AI.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия