Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Reinforcement Learning, Xiao


Варианты приобретения
Цена: 69870.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 199 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Xiao
Название:  Reinforcement Learning
ISBN: 9789811949326
Издательство: Springer
Классификация:

ISBN-10: 9811949328
Обложка/Формат: Hardback
Вес: 0.00 кг.
Язык: English
Иллюстрации: XLII, 593 p. 61 illus., 60 illus. in color.
Читательская аудитория: Professionals
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Reinforcement Learning: Theory and Python Implementation is a tutorial book on reinforcement learning, with explanations of both theory and applications. Starting from a uniform mathematical framework, this book derives the theory of modern reinforcement learning in a systematic way and introduces all mainstream reinforcement learning algorithms including both classical reinforcement learning algorithms such as eligibility trace and deep reinforcement learning algorithms such as PPO, SAC, and MuZero. Every chapter is accompanied by high-quality implementations based on the latest version of Python packages such as Gym, and the implementations of deep reinforcement learning algorithms are all with both TensorFlow 2 and PyTorch 1. All codes can be found on GitHub along with their results and are runnable on a conventional laptop with either Windows, macOS, or Linux. This book is intended for readers who want to learn reinforcement learning systematically and apply reinforcement learning to practical applications. It is also ideal to academical researchers who seek theoretical foundation or algorithm enhancement in their cutting-edge AI research.
Дополнительное описание: 1 Introduction of Reinforcement Learning (RL).- 2 MDP: Markov Decision Process.- 3 Model-based Numerical Iteration.- 4 MC: Monte Carlo Learning.- 5 TD: Temporal Difference Learning.- 6 Function Approximation.- 7 PG: Policy Gradient.- 8 AC: Actor–Critic.-


Model-based reinforcement learning :

Автор: Farsi, Milad,
Название: Model-based reinforcement learning :
ISBN: 111980857X ISBN-13(EAN): 9781119808572
Издательство: Wiley
Рейтинг:
Цена: 108770.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is for researchers and students in statistics, data mining, computer science, machine learning, marketing and also practitioners who implement recommender systems. It provides an in-depth discussion of challenges encountered in deploying real-life large-scale systems and state-of-the-art solutions in personalization, explore/exploit, dimension reduction and multi-objective optimization.

Deep Reinforcement Learning

Автор: Mohit Sewak
Название: Deep Reinforcement Learning
ISBN: 9811382840 ISBN-13(EAN): 9789811382840
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Поставка под заказ.
Описание: This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code.This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds – deep learning and reinforcement learning – to tap the potential of ‘advanced artificial intelligence’ for creating real-world applications and game-winning algorithms.


Handbook of Reinforcement Learning and Control

Автор: Vamvoudakis Kyriakos G., Wan Yan, Lewis Frank L.
Название: Handbook of Reinforcement Learning and Control
ISBN: 3030609898 ISBN-13(EAN): 9783030609894
Издательство: Springer
Цена: 214280.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The Cognitive Dialogue: A New Architecture for Perception and Cognition.- Rooftop-Aware Emergency Landing Planning for Small Unmanned Aircraft Systems.- Quantum Reinforcement Learning in Changing Environment.- The Role of Thermodynamics in the Future Research Directions in Control and Learning.- Mixed Density Reinforcement Learning Methods for Approximate Dynamic Programming.- Analyzing and Mitigating Link-Flooding DoS Attacks Using Stackelberg Games and Adaptive Learning.- Learning and Decision Making for Complex Systems Subjected to Uncertainties: A Stochastic Distribution Control Approach.- Optimal Adaptive Control of Partially Unknown Linear Continuous-time Systems with Input and State Delay.- Gradient Methods Solve the Linear Quadratic Regulator Problem Exponentially Fast.- Architectures, Data Representations and Learning Algorithms: New Directions at the Confluence of Control and Learning.- Reinforcement Learning for Optimal Feedback Control and Multiplayer Games.- Fundamental Principles of Design for Reinforcement Learning Algorithms Course Titles.- Long-Term Impacts of Fair Machine Learning.- Learning-based Model Reduction for Partial Differential Equations with Applications to Thermo-Fluid Models' Identification, State Estimation, and Stabilization.- CESMA: Centralized Expert Supervises Multi-Agents, for Decentralization.- A Unified Framework for Reinforcement Learning and Sequential Decision Analytics.- Trading Utility and Uncertainty: Applying the Value of Information to Resolve the Exploration-Exploitation Dilemma in Reinforcement Learning.- Multi-Agent Reinforcement Learning: Recent Advances, Challenges, and Applications.- Reinforcement Learning Applications, An Industrial Perspective.- A Hybrid Dynamical Systems Perspective of Reinforcement Learning.- Bounded Rationality and Computability Issues in Learning, Perception, Decision-Making, and Games Panagiotis Tsiotras.- Mixed Modality Learning.- Computational Intelligence in Uncertainty Quantification for Learning Control and Games.- Reinforcement Learning Based Optimal Stabilization of Unknown Time Delay Systems Using State and Output Feedback.- Robust Autonomous Driving with Humans in the Loop.- Boundedly Rational Reinforcement Learning for Secure Control.


Deep Reinforcement Learning with Guaranteed Performance

Автор: Yinyan Zhang; Shuai Li; Xuefeng Zhou
Название: Deep Reinforcement Learning with Guaranteed Performance
ISBN: 3030333833 ISBN-13(EAN): 9783030333836
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book discusses methods and algorithms for the near-optimal adaptive control of nonlinear systems, including the corresponding theoretical analysis and simulative examples, and presents two innovative methods for the redundancy resolution of redundant manipulators with consideration of parameter uncertainty and periodic disturbances.It also reports on a series of systematic investigations on a near-optimal adaptive control method based on the Taylor expansion, neural networks, estimator design approaches, and the idea of sliding mode control, focusing on the tracking control problem of nonlinear systems under different scenarios. The book culminates with a presentation of two new redundancy resolution methods; one addresses adaptive kinematic control of redundant manipulators, and the other centers on the effect of periodic input disturbance on redundancy resolution.Each self-contained chapter is clearly written, making the book accessible to graduate students as well as academic and industrial researchers in the fields of adaptive and optimal control, robotics, and dynamic neural networks.

Reinforcement learning algorithms with python

Автор: Lonza, Andrea
Название: Reinforcement learning algorithms with python
ISBN: 1789131111 ISBN-13(EAN): 9781789131116
Издательство: Неизвестно
Рейтинг:
Цена: 47810.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: With this book, you will understand the core concepts and techniques of reinforcement learning. You will take a look into each RL algorithm and will develop your own self-learning algorithms and models. You will optimize the algorithms for better precision, use high-speed actions and lower the risk of anomalies in your applications.

Reinforcement learning

Автор: Sutton, Richard S. Barto, Andrew G.
Название: Reinforcement learning
ISBN: 0262193981 ISBN-13(EAN): 9780262193986
Издательство: MIT Press
Рейтинг:
Цена: 66930.00 T
Наличие на складе: Нет в наличии.
Описание: An account of key ideas and algorithms in reinforcement learning. The discussion ranges from the history of the field`s intellectual foundations to recent developments and applications. Areas studied include reinforcement learning problems in terms of Markov decision problems and solution methods.

AI Crash Course

Автор: de Ponteves Hadelin
Название: AI Crash Course
ISBN: 1838645357 ISBN-13(EAN): 9781838645359
Издательство: Неизвестно
Рейтинг:
Цена: 40450.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: AI legend Hadelin de Ponteves captures his proven AI training approach in a friendly, interactive, and hands-on tutorial book.

Reinforcement Learning: Industrial Applications of Intelligent Agents

Автор: D Phil Winder
Название: Reinforcement Learning: Industrial Applications of Intelligent Agents
ISBN: 1098114833 ISBN-13(EAN): 9781098114831
Издательство: Wiley
Рейтинг:
Цена: 55960.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reinforcement learning (RL) will deliver one of the biggest breakthroughs in AI over the next decade, enabling algorithms to learn from their environment to achieve arbitrary goals. This practical book shows data science and AI professionals how to perform the reinforcement process that allows a machine to learn by itself.

Motivated Reinforcement Learning

Автор: Kathryn E. Merrick; Mary Lou Maher
Название: Motivated Reinforcement Learning
ISBN: 364210035X ISBN-13(EAN): 9783642100352
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book covers the design, application and evaluation of computational models of motivation in reinforcement learning. The performance of these models is demonstrated by applications in simulated game scenarios and a live, open-ended, virtual world.

R Machine Learning Projects

Автор: Chinnamgari Sunil Kumar
Название: R Machine Learning Projects
ISBN: 1789807948 ISBN-13(EAN): 9781789807943
Издательство: Неизвестно
Рейтинг:
Цена: 53940.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The purpose of the book is to help a machine learning practitioner gets hands-on experience in working with real-world data and apply modern machine learning algorithms. You will learn to implement each algorithm to a specific industry problem. It covers projects involving both supervised as well as unsupervised learning approaches.

Reinforcement Learning Algorithms: Analysis and Applications

Автор: Belousov Boris, Abdulsamad Hany, Klink Pascal
Название: Reinforcement Learning Algorithms: Analysis and Applications
ISBN: 3030411877 ISBN-13(EAN): 9783030411879
Издательство: Springer
Цена: 130430.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences.

Applying Reinforcement Learning on Real-World Data with Practical Examples in Python

Автор: Kajal Singh, Matthew E. Taylor, Philip Osborne
Название: Applying Reinforcement Learning on Real-World Data with Practical Examples in Python
ISBN: 1636393446 ISBN-13(EAN): 9781636393445
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 45270.00 T
Наличие на складе: Нет в наличии.
Описание: Reinforcement learning is a powerful tool in artificial intelligence in which virtual or physical agents learn to optimize their decision making to achieve long-term goals. This book shows how reinforcement learning can be adopted in different situations, including robot control, stock trading, supply chain optimization, and plant control.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия