Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Machine Learning for Engineers, Osvaldo Simeone


Варианты приобретения
Цена: 60190.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 167 шт.  
При оформлении заказа до: 2025-12-22
Ориентировочная дата поставки: Январь
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Osvaldo Simeone
Название:  Machine Learning for Engineers
ISBN: 9781316512821
Издательство: Cambridge Academ
Классификация:




ISBN-10: 1316512827
Обложка/Формат: Hardback
Страницы: 450
Вес: 1.48 кг.
Дата издания: 03.11.2022
Серия: Physics
Язык: English
Издание: New ed
Иллюстрации: Worked examples or exercises; worked examples or exercises
Размер: 23.62 x 16.00 x 3.05 cm
Читательская аудитория: General (us: trade)
Ключевые слова: Communications engineering / telecommunications,Information theory,Machine learning,Pattern recognition,Signal processing, TECHNOLOGY & ENGINEERING / Signals & Signal
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Designed with engineers in mind, this self-contained book will equip students with everything they need to apply machine learning principles to real-world engineering problems. With reproducible examples using Matlab, and lecture slides and solutions for instructors, this is the ideal introduction for engineering students of all disciplines.

Linear Algebra and Learning from Data

Автор: Strang Gilbert
Название: Linear Algebra and Learning from Data
ISBN: 0692196382 ISBN-13(EAN): 9780692196380
Издательство: Cambridge Academ
Рейтинг:
Цена: 66520.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.

Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 1493938436 ISBN-13(EAN): 9781493938438
Издательство: Springer
Рейтинг:
Цена: 76160.00 T
Наличие на складе: Ожидается поступление.
Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Mathematics for Machine Learning

Автор: Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
Название: Mathematics for Machine Learning
ISBN: 110845514X ISBN-13(EAN): 9781108455145
Издательство: Cambridge Academ
Рейтинг:
Цена: 42230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics.

Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 124150.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.


Introduction to Applied Linear Algebra

Автор: Boyd Stephen
Название: Introduction to Applied Linear Algebra
ISBN: 1316518965 ISBN-13(EAN): 9781316518960
Издательство: Cambridge Academ
Рейтинг:
Цена: 45410.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.

Probabilistic Machine Learning for Civil Engineers

Автор: Goulet James-A
Название: Probabilistic Machine Learning for Civil Engineers
ISBN: 0262538709 ISBN-13(EAN): 9780262538701
Издательство: MIT Press
Рейтинг:
Цена: 56430.00 T
Наличие на складе: Невозможна поставка.
Описание: An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises.

This book introduces probabilistic machine learning concepts to civil engineering students and professionals, presenting key approaches and techniques in a way that is accessible to readers without a specialized background in statistics or computer science. It presents different methods clearly and directly, through step-by-step examples, illustrations, and exercises. Having mastered the material, readers will be able to understand the more advanced machine learning literature from which this book draws.

The book presents key approaches in the three subfields of probabilistic machine learning: supervised learning, unsupervised learning, and reinforcement learning. It first covers the background knowledge required to understand machine learning, including linear algebra and probability theory. It goes on to present Bayesian estimation, which is behind the formulation of both supervised and unsupervised learning methods, and Markov chain Monte Carlo methods, which enable Bayesian estimation in certain complex cases. The book then covers approaches associated with supervised learning, including regression methods and classification methods, and notions associated with unsupervised learning, including clustering, dimensionality reduction, Bayesian networks, state-space models, and model calibration. Finally, the book introduces fundamental concepts of rational decisions in uncertain contexts and rational decision-making in uncertain and sequential contexts. Building on this, the book describes the basics of reinforcement learning, whereby a virtual agent learns how to make optimal decisions through trial and error while interacting with its environment.


Mathematics for Machine Learning

Автор: Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
Название: Mathematics for Machine Learning
ISBN: 1108470041 ISBN-13(EAN): 9781108470049
Издательство: Cambridge Academ
Рейтинг:
Цена: 88710.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics.

Machine Learning for Engineers: Using Data to Solve Problems for Physical Systems

Автор: McClarren Ryan G.
Название: Machine Learning for Engineers: Using Data to Solve Problems for Physical Systems
ISBN: 3030703878 ISBN-13(EAN): 9783030703875
Издательство: Springer
Рейтинг:
Цена: 51230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging.

An Introduction to Quantum Machine Learning for Engineers

Автор: Osvaldo Simeone
Название: An Introduction to Quantum Machine Learning for Engineers
ISBN: 1638280584 ISBN-13(EAN): 9781638280583
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 98870.00 T
Наличие на складе: Нет в наличии.
Описание: This monograph is motivated by a number of recent developments that appear to define a possible new role for researchers with an engineering profile. Software that make programming quantum algorithms more accessible. A new framework is emerging for programming quantum algorithms to be run on current quantum hardware.

Optimization for data analysis

Автор: Wright, Stephen J. (university Of Wisconsin, Madison) Recht, Benjamin (university Of California, Berkeley)
Название: Optimization for data analysis
ISBN: 1316518981 ISBN-13(EAN): 9781316518984
Издательство: Cambridge Academ
Рейтинг:
Цена: 40120.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Optimization techniques are at the core of data science. An understanding of the basic techniques and their fundamental properties provides important grounding for students, researchers, and practitioners. This compact, self-contained text covers the fundamentals of optimization algorithms, focusing on the techniques most relevant to data science.

Digital Signal Processing: A Practical Guide for Engineers and Sc

Автор: Steven Smith
Название: Digital Signal Processing: A Practical Guide for Engineers and Sc
ISBN: 075067444X ISBN-13(EAN): 9780750674447
Издательство: Elsevier Science
Рейтинг:
Цена: 87570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In addition to its thorough coverage of DSP design and programming techniques, Smith also covers the operation and usage of DSP chips. He uses Analog Devices' popular DSP chip family as design examples. Also included on the companion website is technical info on DSP processors from the four major manufacturers (Analog Devices, Texas Instruments, Motorola, and Lucent) and other DSP software.
*Covers all major DSP topics
*Full of insider information and shortcuts
*Basic techniques and algorithms explained without complex numbers

Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems

Автор: Geron Aurelien
Название: Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems
ISBN: 1492032646 ISBN-13(EAN): 9781492032649
Издательство: Wiley
Рейтинг:
Цена: 63350.00 T
Наличие на складе: Поставка под заказ.
Описание:

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data.

The updated edition of this practical book uses concrete examples, minimal theory, and three production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия