Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Mathematics for Machine Learning, Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong


Варианты приобретения
Цена: 42230.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: 9 шт.  Склад Америка: 529 шт.  
При оформлении заказа до: 2025-11-03
Ориентировочная дата поставки: Декабрь

Добавить в корзину
в Мои желания

Автор: Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
Название:  Mathematics for Machine Learning
Перевод названия: Марк Питер Дайзенрот, А. Альдо Фейсал, Чен Сун Он: Математика для машинного обучения
ISBN: 9781108455145
Издательство: Cambridge Academ
Классификация:




ISBN-10: 110845514X
Обложка/Формат: Paperback
Страницы: 398
Вес: 0.77 кг.
Дата издания: 31.03.2020
Серия: Mathematics
Язык: English
Иллюстрации: Worked examples or exercises; 106 halftones, color; 3 halftones, black and white
Размер: 17.78 x 1.78 x 25.15 cm
Читательская аудитория: Tertiary education (us: college)
Ключевые слова: Machine learning,Pattern recognition,Probability & statistics,Maths for engineers, COMPUTERS / Computer Vision & Pattern Recognition
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics.

Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 0387310738 ISBN-13(EAN): 9780387310732
Издательство: Springer
Рейтинг:
Цена: 79190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 124150.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.


Introduction to Probability, Second Edition

Автор: Joseph K. Blitzstein, Jessica Hwang
Название: Introduction to Probability, Second Edition
ISBN: 1138369918 ISBN-13(EAN): 9781138369917
Издательство: Taylor&Francis
Рейтинг:
Цена: 74510.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Assumes one-semester of calculus. "Stories" make distributions (Normal, Binomial, Poisson that are widely-used in statistics) easier to remember, understand. Many books write down formulas without explaining clearly why these particular distributions are important or how they are all connected.

Matrix Differential Calculus with Applications in Statistics and Econometrics

Автор: Jan R. Magnus, Heinz Neudecker
Название: Matrix Differential Calculus with Applications in Statistics and Econometrics
ISBN: 1119541204 ISBN-13(EAN): 9781119541202
Издательство: Wiley
Рейтинг:
Цена: 93930.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

A brand new, fully updated edition of a popular classic on matrix differential calculus with applications in statistics and econometrics

This exhaustive, self-contained book on matrix theory and matrix differential calculus provides a treatment of matrix calculus based on differentials and shows how easy it is to use this theory once you have mastered the technique. Jan Magnus, who, along with the late Heinz Neudecker, pioneered the theory, develops it further in this new edition and provides many examples along the way to support it.

Matrix calculus has become an essential tool for quantitative methods in a large number of applications, ranging from social and behavioral sciences to econometrics. It is still relevant and used today in a wide range of subjects such as the biosciences and psychology. Matrix Differential Calculus with Applications in Statistics and Econometrics, Third Edition contains all of the essentials of multivariable calculus with an emphasis on the use of differentials. It starts by presenting a concise, yet thorough overview of matrix algebra, then goes on to develop the theory of differentials. The rest of the text combines the theory and application of matrix differential calculus, providing the practitioner and researcher with both a quick review and a detailed reference.

  • Fulfills the need for an updated and unified treatment of matrix differential calculus
  • Contains many new examples and exercises based on questions asked of the author over the years
  • Covers new developments in field and features new applications
  • Written by a leading expert and pioneer of the theory
  • Part of the Wiley Series in Probability and Statistics

Matrix Differential Calculus With Applications in Statistics and Econometrics Third Edition is an ideal text for graduate students and academics studying the subject, as well as for postgraduates and specialists working in biosciences and psychology.


Computer Age Statistical Inference

Автор: Bradley Efron and Trevor Hastie
Название: Computer Age Statistical Inference
ISBN: 1107149894 ISBN-13(EAN): 9781107149892
Издательство: Cambridge Academ
Рейтинг:
Цена: 60190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Mathematics for economics and  finance: methods and modelling

Автор: Anthony, M, , Biggs N.
Название: Mathematics for economics and finance: methods and modelling
ISBN: 0521559138 ISBN-13(EAN): 9780521559133
Издательство: Cambridge Academ
Рейтинг:
Цена: 47510.00 T
Наличие на складе: Поставка под заказ.
Описание: An introduction to mathematical modelling in economics and finance for students of both economics and mathematics. Throughout, the stress is firmly on how the mathematics relates to economics, illustrated with copious examples and exercises that will foster depth of understanding.

Mathematics for economists

Автор: E. Simon,
Название: Mathematics for economists
ISBN: 0393117529 ISBN-13(EAN): 9780393117523
Издательство: Wiley
Рейтинг:
Цена: 58080.00 T
Наличие на складе: Невозможна поставка.
Описание: Mathematics for Economists, a new text for advanced undergraduate and beginning graduate students in economics, is a thoroughly modern treatment of the mathematics that underlies economic theory.

Actuarial Mathematics for Life Contingent Risks

Автор: Dickson, David C. M.
Название: Actuarial Mathematics for Life Contingent Risks
ISBN: 1107044073 ISBN-13(EAN): 9781107044074
Издательство: Cambridge Academ
Рейтинг:
Цена: 83430.00 T
Наличие на складе: Поставка под заказ.
Описание: Actuarial Mathematics for Life Contingent Risks, 2nd edition, is the sole required text for the Society of Actuaries Exam MLC Fall 2015 and Spring 2016. It covers the entire syllabus for the SOA Exam MLC, including new sections for Spring 2016. It is ideal for university courses and for individuals preparing for professional actuarial examinations - especially the new, long-answer exam questions. Three leaders in actuarial science balance rigor with intuition and emphasize practical applications using computational techniques to provide a modern perspective on life contingencies and equip students for the products and risk structures of the future. The authors then develop a more contemporary outlook, introducing multiple state models, emerging cash flows and embedded options. The 210 exercises provide meaningful practice with both long-answer and multiple choice questions. Furthermore: • the book has been updated to include new material on discrete time Markov processes, on models involving joint lives, and on universal life insurance and participating traditional insurance • the Solutions Manual (ISBN 9781107620261), available for separate purchase, provides detailed solutions to the text's exercises.

Dynamical Systems: Stability, Symbolic Dynamics, and Chaos ( Studies in Advanced Mathematics #28 )

Автор: Robinson, Clark
Название: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos ( Studies in Advanced Mathematics #28 )
ISBN: 0849384958 ISBN-13(EAN): 9780849384950
Издательство: Taylor&Francis
Рейтинг:
Цена: 193950.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Treats the dynamics of both iteration of functions and solutions of ordinary differential equations. This book introduces various concepts for iteration of functions where the geometry is simpler, but results are interpreted for differential equations. It concentrates on properties of the whole system or subsets of the system.

An Introduction to Machine Learning

Автор: Miroslav Kubat
Название: An Introduction to Machine Learning
ISBN: 3319348868 ISBN-13(EAN): 9783319348865
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications.

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 61750.00 T
Наличие на складе: Поставка под заказ.
Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book

Mathematics for Finance

Автор: Capinski
Название: Mathematics for Finance
ISBN: 0857290819 ISBN-13(EAN): 9780857290816
Издательство: Springer
Рейтинг:
Цена: 32560.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Mathematics for Finance: An Introduction to Financial Engineering combines financial motivation with mathematical style.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия