Mathematics for Machine Learning, Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
Автор: Christopher M. Bishop Название: Pattern Recognition and Machine Learning ISBN: 0387310738 ISBN-13(EAN): 9780387310732 Издательство: Springer Рейтинг: Цена: 79190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Автор: Kevin Murphy Название: Machine Learning ISBN: 0262018020 ISBN-13(EAN): 9780262018029 Издательство: MIT Press Рейтинг: Цена: 124150.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.
The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Автор: Joseph K. Blitzstein, Jessica Hwang Название: Introduction to Probability, Second Edition ISBN: 1138369918 ISBN-13(EAN): 9781138369917 Издательство: Taylor&Francis Рейтинг: Цена: 74510.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Assumes one-semester of calculus. "Stories" make distributions (Normal, Binomial, Poisson that are widely-used in statistics) easier to remember, understand. Many books write down formulas without explaining clearly why these particular distributions are important or how they are all connected.
A brand new, fully updated edition of a popular classic on matrix differential calculus with applications in statistics and econometrics
This exhaustive, self-contained book on matrix theory and matrix differential calculus provides a treatment of matrix calculus based on differentials and shows how easy it is to use this theory once you have mastered the technique. Jan Magnus, who, along with the late Heinz Neudecker, pioneered the theory, develops it further in this new edition and provides many examples along the way to support it.
Matrix calculus has become an essential tool for quantitative methods in a large number of applications, ranging from social and behavioral sciences to econometrics. It is still relevant and used today in a wide range of subjects such as the biosciences and psychology. Matrix Differential Calculus with Applications in Statistics and Econometrics, Third Edition contains all of the essentials of multivariable calculus with an emphasis on the use of differentials. It starts by presenting a concise, yet thorough overview of matrix algebra, then goes on to develop the theory of differentials. The rest of the text combines the theory and application of matrix differential calculus, providing the practitioner and researcher with both a quick review and a detailed reference.
Fulfills the need for an updated and unified treatment of matrix differential calculus
Contains many new examples and exercises based on questions asked of the author over the years
Covers new developments in field and features new applications
Written by a leading expert and pioneer of the theory
Part of the Wiley Series in Probability and Statistics
Matrix Differential Calculus With Applications in Statistics and Econometrics Third Edition is an ideal text for graduate students and academics studying the subject, as well as for postgraduates and specialists working in biosciences and psychology.
Автор: Bradley Efron and Trevor Hastie Название: Computer Age Statistical Inference ISBN: 1107149894 ISBN-13(EAN): 9781107149892 Издательство: Cambridge Academ Рейтинг: Цена: 60190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Автор: Anthony, M, , Biggs N. Название: Mathematics for economics and finance: methods and modelling ISBN: 0521559138 ISBN-13(EAN): 9780521559133 Издательство: Cambridge Academ Рейтинг: Цена: 47510.00 T Наличие на складе: Поставка под заказ. Описание: An introduction to mathematical modelling in economics and finance for students of both economics and mathematics. Throughout, the stress is firmly on how the mathematics relates to economics, illustrated with copious examples and exercises that will foster depth of understanding.
Автор: E. Simon, Название: Mathematics for economists ISBN: 0393117529 ISBN-13(EAN): 9780393117523 Издательство: Wiley Рейтинг: Цена: 58080.00 T Наличие на складе: Невозможна поставка. Описание: Mathematics for Economists, a new text for advanced undergraduate and beginning graduate students in economics, is a thoroughly modern treatment of the mathematics that underlies economic theory.
Автор: Dickson, David C. M. Название: Actuarial Mathematics for Life Contingent Risks ISBN: 1107044073 ISBN-13(EAN): 9781107044074 Издательство: Cambridge Academ Рейтинг: Цена: 83430.00 T Наличие на складе: Поставка под заказ. Описание: Actuarial Mathematics for Life Contingent Risks, 2nd edition, is the sole required text for the Society of Actuaries Exam MLC Fall 2015 and Spring 2016. It covers the entire syllabus for the SOA Exam MLC, including new sections for Spring 2016. It is ideal for university courses and for individuals preparing for professional actuarial examinations - especially the new, long-answer exam questions. Three leaders in actuarial science balance rigor with intuition and emphasize practical applications using computational techniques to provide a modern perspective on life contingencies and equip students for the products and risk structures of the future. The authors then develop a more contemporary outlook, introducing multiple state models, emerging cash flows and embedded options. The 210 exercises provide meaningful practice with both long-answer and multiple choice questions. Furthermore: • the book has been updated to include new material on discrete time Markov processes, on models involving joint lives, and on universal life insurance and participating traditional insurance • the Solutions Manual (ISBN 9781107620261), available for separate purchase, provides detailed solutions to the text's exercises.
Автор: Robinson, Clark Название: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos ( Studies in Advanced Mathematics #28 ) ISBN: 0849384958 ISBN-13(EAN): 9780849384950 Издательство: Taylor&Francis Рейтинг: Цена: 193950.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Treats the dynamics of both iteration of functions and solutions of ordinary differential equations. This book introduces various concepts for iteration of functions where the geometry is simpler, but results are interpreted for differential equations. It concentrates on properties of the whole system or subsets of the system.
Автор: Miroslav Kubat Название: An Introduction to Machine Learning ISBN: 3319348868 ISBN-13(EAN): 9783319348865 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications.
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Автор: Capinski Название: Mathematics for Finance ISBN: 0857290819 ISBN-13(EAN): 9780857290816 Издательство: Springer Рейтинг: Цена: 32560.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Mathematics for Finance: An Introduction to Financial Engineering combines financial motivation with mathematical style.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz