Predictive Analytics for Data Driven Decision Making: Tools and Techniques for Solving Real World Problems, L. Ashok Kumar
Название: Computing Predictive Analytics, Business Intelligence, and Economics ISBN: 177188729X ISBN-13(EAN): 9781771887298 Издательство: Taylor&Francis Рейтинг: Цена: 118410.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This volume brings together research and system designs that address the scientific basis and the practical systems design issues that support areas ranging from intelligent business interfaces and predictive analytics to economics modeling.
Автор: Sayed-Mouchaweh Moamar Название: Artificial Intelligence Techniques for a Scalable Energy Transition: Advanced Methods, Digital Technologies, Decision Support Tools, and Applications ISBN: 3030427285 ISBN-13(EAN): 9783030427283 Издательство: Springer Цена: 111790.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book presents research in artificial techniques using intelligence for energy transition, outlining several applications including production systems, energy production, energy distribution, energy management, renewable energy production, cyber security, industry 4.0 and internet of things etc.
Автор: Baesens Bart, Verbeke Wouter, Van Vlasselaer Veron Название: Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection ISBN: 1119133122 ISBN-13(EAN): 9781119133124 Издательство: Wiley Рейтинг: Цена: 41190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution.
As data holdings get bigger and questions get harder, data scientists and analysts must focus on the systems, the tools and techniques, and the disciplined process to get the correct answer, quickly Whether you work within industry or government, this book will provide you with a foundation to successfully and confidently process large amounts of quantitative data.
Here are just a dozen of the many questions answered within these pages:
What does quantitative analysis of a system really mean?
What is a system?
What are big data and analystics?
How do you know your numbers are good?
What will the future data science environment look like?
How do you determine data provenance?
How do you gather and process information, and then organize, store, and synthesize it?
How does an organization implement data analytics?
Do you really need to think like a Chief Information Officer?
What is the best way to protect data?
What makes a good dashboard?
What is the relationship between eating ice cream and getting attacked by a shark?
The nine chapters in this book are arranged in three parts that address systems concepts in general, tools and techniques, and future trend topics. Systems concepts include contrasting open and closed systems, performing data mining and big data analysis, and gauging data quality. Tools and techniques include analyzing both continuous and discrete data, applying probability basics, and practicing quantitative analysis such as descriptive and inferential statistics. Future trends include leveraging the Internet of Everything, modeling Artificial Intelligence, and establishing a Data Analytics Support Office (DASO).
Many examples are included that were generated using common software, such as Excel, Minitab, Tableau, SAS, and Crystal Ball. While words are good, examples can sometimes be a better teaching tool. For each example included, data files can be found on the companion website. Many of the data sets are tied to the global economy because they use data from shipping ports, air freight hubs, largest cities, and soccer teams. The appendices contain more detailed analysis including the 10 T's for Data Mining, Million Row Data Audit (MRDA) Processes, Analysis of Rainfall, and Simulation Models for Evaluating Traffic Flow.
1.Introduction to Industrial Analytics.- 2. Measuring Performance.- 3. Modelling and Simulating Systems.- 4. Optimising Systems.- 5. Production Control and Scheduling.- 6. Simulating Demand Forecasts.- 7. Investigating Time Series Data.- 8. Determining the Minimum Information for Effective Control.- 9. Constructing Machine Learning Models for Prediction.- 10. Exploring Model Accuracy.- 11. Building a Business Case for Sensing Technology Adoption.- 12. Improving Throughput by Utilising Sensor Data.- 13. Constructing a Digital Factory Model to Optimise Production.- 14. Examining a Digital Supply Chain.- 15. Probability Essentials.- 16. Building Simulations with Spreadsheets.- 17. Using Python to Construct Manufacturing Models.- 18. Predictive Analytics with KNIME.- 19. Using R to Evaluate Data.- 20. Example Case Study Data.
Автор: Jones Herbert Название: Data Science for Business: Predictive Modeling, Data Mining, Data Analytics, Data Warehousing, Data Visualization, Regression Analysis, Database ISBN: 1647483263 ISBN-13(EAN): 9781647483265 Издательство: Неизвестно Рейтинг: Цена: 27580.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Data science has a huge impact on how companies conduct business, and those who don`t learn about this revolutionaryfield could be left behind. You see, data science will help you make better decisions, know what products and services to release, and how to provide better service to your customers.
Автор: Galit Shmueli, Peter C. Bruce, Nitin R. Patel Название: Data Mining for Business Analytics: Concepts, Techniques, and Applications with XLMiner ISBN: 1118729277 ISBN-13(EAN): 9781118729274 Издательство: Wiley Рейтинг: Цена: 118270.00 T Наличие на складе: Поставка под заказ. Описание: Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner(R), Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies.
Автор: Boris Deliba?i?; Jorge E. Hern?ndez; Jason Papatha Название: Decision Support Systems V – Big Data Analytics for Decision Making ISBN: 3319185322 ISBN-13(EAN): 9783319185323 Издательство: Springer Рейтинг: Цена: 37270.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: 'Big Data' Decision Making Use Cases.- The Roles of Big Data in the Decision-Support Process: An Empirical Investigation.- Cloud Enabled Big Data Business Platform for Logistics Services: A Research and Development Agenda.- Making Sense of Governmental Activities Over Social Media: A Data-Driven Approach.- Data-Mining and Expert Models for Predicting Injury Risk in Ski Resorts.- The Effects of Performance Ratios in Predicting Corporate Bankruptcy: The Italian Case.- A Tangible Collaborative Decision Support System for Various Variants of the Vehicle Routing Problem.- Decision Support Model for Participatory Management of Water Resource.- Modeling Interactions Among Criteria in MCDM Methods: A Review.
Автор: Singh Amandeep Название: Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing ISBN: 1799872327 ISBN-13(EAN): 9781799872320 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 175560.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The availability of big data, low-cost commodity hardware, and new information management and analytic software have produced a unique moment in the history of data analysis. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue, and profitability especially in digital marketing. Data plays a huge role in understanding valuable insights about target demographics and customer preferences. From every interaction with technology, regardless of whether it is active or passive, we are creating new data that can describe us. If analyzed correctly, these data points can explain a lot about our behavior, personalities, and life events. Companies can leverage these insights for product improvements, business strategy, and marketing campaigns to cater to the target customers.
Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing aids understanding of big data in terms of digital marketing for meaningful analysis of information that can improve marketing efforts and strategies using the latest digital techniques. The chapters cover a wide array of essential marketing topics and techniques, including search engine marketing, consumer behavior, social media marketing, online advertising, and how they interact with big data. This book is essential for professionals and researchers working in the field of analytics, data, and digital marketing, along with marketers, advertisers, brand managers, social media specialists, managers, sales professionals, practitioners, researchers, academicians, and students looking for the latest information on how big data is being used in digital marketing strategies.
Автор: Sarker Iqbal, Colman Alan, Han Jun Название: Context-Aware Machine Learning and Mobile Data Analytics: Automated Rule-based Services with Intelligent Decision-Making ISBN: 3030885291 ISBN-13(EAN): 9783030885298 Издательство: Springer Рейтинг: Цена: 130430.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book offers a clear understanding of the concept of context-aware machine learning including an automated rule-based framework within the broad area of data science and analytics, particularly, with the aim of data-driven intelligent decision making.
Data Science in Theory and Practice delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling.
The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python, and provides pseudo-algorithms to port the code to any other language.
Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like:
Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis
A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity
Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages
An exploration of algorithms, including how to write one and how to perform an asymptotic analysis
A comprehensive discussion of several techniques for analyzing and predicting complex data sets
Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs, Data Science in Theory and Practice will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz