Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Context-Aware Machine Learning and Mobile Data Analytics: Automated Rule-based Services with Intelligent Decision-Making, Sarker Iqbal, Colman Alan, Han Jun


Варианты приобретения
Цена: 130430.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 231 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Sarker Iqbal, Colman Alan, Han Jun
Название:  Context-Aware Machine Learning and Mobile Data Analytics: Automated Rule-based Services with Intelligent Decision-Making
ISBN: 9783030885298
Издательство: Springer
Классификация:


ISBN-10: 3030885291
Обложка/Формат: Hardcover
Страницы: 176
Вес: 0.43 кг.
Дата издания: 02.01.2022
Язык: English
Издание: 1st ed. 2021
Иллюстрации: 31 illustrations, color; 10 illustrations, black and white; xvi, 157 p. 41 illus., 31 illus. in color.; 31 illustrations, color; 10 illustrations, bla
Размер: 23.39 x 15.60 x 1.12 cm
Читательская аудитория: Professional & vocational
Подзаголовок: Automated rule-based services with intelligent decision-making
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book offers a clear understanding of the concept of context-aware machine learning including an automated rule-based framework within the broad area of data science and analytics, particularly, with the aim of data-driven intelligent decision making.

Provenance in Data Science: From Data Models to Context-Aware Knowledge Graphs

Автор: Sikos Leslie F., Seneviratne Oshani W., McGuinness Deborah L.
Название: Provenance in Data Science: From Data Models to Context-Aware Knowledge Graphs
ISBN: 3030676803 ISBN-13(EAN): 9783030676803
Издательство: Springer
Рейтинг:
Цена: 130430.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The Evolution of Context-Aware RDF Knowledge Graphs.- Data Provenance and Accountability on the Web.- The Right (Provenance) Hammer for the Job: a Comparison of Data Provenance Instrumentation.- Contextualized Knowledge Graphs in Communication Network and Cyber-Physical System Modeling.- ProvCaRe: A Large-Scale Semantic Provenance Resource for Scientific Reproducibility.- Graph-Based Natural Language Processing for the Pharmaceutical Industry.

Context-Aware Computing

Название: Context-Aware Computing
ISBN: 3110555689 ISBN-13(EAN): 9783110555684
Издательство: Walter de Gruyter
Цена: 136310.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book addresses the impact of ambient intelligence, particularly its user-centric context-awareness requirement on data management strategies and solutions. Techniques of conceptualizing, capturing, protecting, modelling, and querying context information, as well as context-aware data management application are discussed, making the book is an essential reference for computer scientists, information scientists and industrial engineers.

Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation

Автор: Editors: Deo, R., Samui, P., Kisi, O., Zaher, Y.
Название: Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation
ISBN: 9811557713 ISBN-13(EAN): 9789811557712
Издательство: Springer
Рейтинг:
Цена: 167700.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book highlights cutting-edge applications of machine learning techniques for disaster management by monitoring, analyzing, and forecasting hydro-meteorological variables.

Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation: Theory and Practice of Hazard Mitigation

Автор: Deo Ravinesh C., Samui Pijush, Kisi Ozgur
Название: Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation: Theory and Practice of Hazard Mitigation
ISBN: 9811557748 ISBN-13(EAN): 9789811557743
Издательство: Springer
Цена: 167700.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book highlights cutting-edge applications of machine learning techniques for disaster management by monitoring, analyzing, and forecasting hydro-meteorological variables.

Decision Support Systems V – Big Data Analytics for Decision Making

Автор: Boris Deliba?i?; Jorge E. Hern?ndez; Jason Papatha
Название: Decision Support Systems V – Big Data Analytics for Decision Making
ISBN: 3319185322 ISBN-13(EAN): 9783319185323
Издательство: Springer
Рейтинг:
Цена: 37270.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 'Big Data' Decision Making Use Cases.- The Roles of Big Data in the Decision-Support Process: An Empirical Investigation.- Cloud Enabled Big Data Business Platform for Logistics Services: A Research and Development Agenda.- Making Sense of Governmental Activities Over Social Media: A Data-Driven Approach.- Data-Mining and Expert Models for Predicting Injury Risk in Ski Resorts.- The Effects of Performance Ratios in Predicting Corporate Bankruptcy: The Italian Case.- A Tangible Collaborative Decision Support System for Various Variants of the Vehicle Routing Problem.- Decision Support Model for Participatory Management of Water Resource.- Modeling Interactions Among Criteria in MCDM Methods: A Review.

Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing

Автор: Singh Amandeep
Название: Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing
ISBN: 1799872327 ISBN-13(EAN): 9781799872320
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 175560.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The availability of big data, low-cost commodity hardware, and new information management and analytic software have produced a unique moment in the history of data analysis. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue, and profitability especially in digital marketing. Data plays a huge role in understanding valuable insights about target demographics and customer preferences. From every interaction with technology, regardless of whether it is active or passive, we are creating new data that can describe us. If analyzed correctly, these data points can explain a lot about our behavior, personalities, and life events. Companies can leverage these insights for product improvements, business strategy, and marketing campaigns to cater to the target customers.

Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing aids understanding of big data in terms of digital marketing for meaningful analysis of information that can improve marketing efforts and strategies using the latest digital techniques. The chapters cover a wide array of essential marketing topics and techniques, including search engine marketing, consumer behavior, social media marketing, online advertising, and how they interact with big data. This book is essential for professionals and researchers working in the field of analytics, data, and digital marketing, along with marketers, advertisers, brand managers, social media specialists, managers, sales professionals, practitioners, researchers, academicians, and students looking for the latest information on how big data is being used in digital marketing strategies.

Learning and Decision-Making from Rank Data

Автор: Xia Lirong
Название: Learning and Decision-Making from Rank Data
ISBN: 1681734400 ISBN-13(EAN): 9781681734408
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 61910.00 T
Наличие на складе: Невозможна поставка.
Описание: The ubiquitous challenge of learning and decision-making from rank data arises in situations where intelligent systems collect preference and behavior data from humans, learn from the data, and then use the data to help humans make efficient, effective, and timely decisions. Often, such data are represented by rankings. This book surveys some recent progress toward addressing the challenge from the considerations of statistics, computation, and socio-economics. We will cover classical statistical models for rank data, including random utility models, distance-based models, and mixture models. We will discuss and compare classical and state of-the-art algorithms, such as algorithms based on Minorize-Majorization (MM), Expectation-Maximization (EM), Generalized Method-of-Moments (GMM), rank breaking, and tensor decomposition. We will also introduce principled Bayesian preference elicitation frameworks for collecting rank data. Finally, we will examine socio-economic aspects of statistically desirable decision-making mechanisms, such as Bayesian estimators. This book can be useful in three ways: (1) for theoreticians in statistics and machine learning to better understand the considerations and caveats of learning from rank data, compared to learning from other types of data, especially cardinal data; (2) for practitioners to apply algorithms covered by the book for sampling, learning, and aggregation; and (3) as a textbook for graduate students or advanced undergraduate students to learn about the field. This book requires that the reader has basic knowledge in probability, statistics, and algorithms. Knowledge in social choice would also help but is not required.

Learning and Decision-Making from Rank Data

Автор: Xia Lirong
Название: Learning and Decision-Making from Rank Data
ISBN: 1681734427 ISBN-13(EAN): 9781681734422
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 82230.00 T
Наличие на складе: Невозможна поставка.
Описание: The ubiquitous challenge of learning and decision-making from rank data arises in situations where intelligent systems collect preference and behavior data from humans, learn from the data, and then use the data to help humans make efficient, effective, and timely decisions. Often, such data are represented by rankings. This book surveys some recent progress toward addressing the challenge from the considerations of statistics, computation, and socio-economics. We will cover classical statistical models for rank data, including random utility models, distance-based models, and mixture models. We will discuss and compare classical and state of-the-art algorithms, such as algorithms based on Minorize-Majorization (MM), Expectation-Maximization (EM), Generalized Method-of-Moments (GMM), rank breaking, and tensor decomposition. We will also introduce principled Bayesian preference elicitation frameworks for collecting rank data. Finally, we will examine socio-economic aspects of statistically desirable decision-making mechanisms, such as Bayesian estimators. This book can be useful in three ways: (1) for theoreticians in statistics and machine learning to better understand the considerations and caveats of learning from rank data, compared to learning from other types of data, especially cardinal data; (2) for practitioners to apply algorithms covered by the book for sampling, learning, and aggregation; and (3) as a textbook for graduate students or advanced undergraduate students to learn about the field. This book requires that the reader has basic knowledge in probability, statistics, and algorithms. Knowledge in social choice would also help but is not required.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия