Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach, Hassanien Aboul-Ella, Dey Nilanjan, Elghamrawy Sally
Автор: Koushik Ghosh, Souvik Bhattacharyya Название: Noise Filtering for Big Data Analytics ISBN: 3110697092 ISBN-13(EAN): 9783110697094 Издательство: Walter de Gruyter Рейтинг: Цена: 173490.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book explains how to perform data de-noising, in large scale, with a satisfactory level of accuracy. Three main issues are considered. Firstly, how to eliminate the error propagation from one stage to next stages while developing a filtered model.
Secondly, how to maintain the positional importance of data whilst purifying it. Finally, preservation of memory in the data is crucial to extract smart data from noisy big data. If, after the application of any form of smoothing or filtering, the memory of the corresponding data changes heavily, then the final data may lose some important information.
This may lead to wrong or erroneous conclusions. But, when anticipating any loss of information due to smoothing or filtering, one cannot avoid the process of denoising as on the other hand any kind of analysis of big data in the presence of noise can be misleading. So, the entire process demands very careful execution with efficient and smart models in order to effectively deal with it.
Artificial intelligence is a word that carries with it heavy connotations. Although artificial intelligence is nothing more than the capacity for logic and understanding that machines can exhibit, in the minds of most people artificial intelligence is almost a Pandora's box that, when opened, will eventually signal the human race's doom..
The idea that machines pose an existential threat to human beings has been around for at least 60 years. It goes something like this: intelligent machines eventually realize the uselessness of human beings and turn against their creators. Or this: intelligent machines reduce human to cattle or even food after a dramatic war that human beings lose.
Human beings have created countless languages and writing systems that have allowed us to expand collective human knowledge over a period of thousands of years. Much of the knowledge that we utilized today, knowledge about the math, science, and the stars, originates from observations made thousands of years ago but which were recorded by writing systems, allowing this knowledge to be preserved and passed down.
Artificial intelligence has been used for many business, financial, medical, and other applications, and scientists and researchers are actively studying how these applications can be expanded to make human life simpler.
The applications of AI will be explored in this book, both the real applications to business, finance, medicine, and health and the theoretical applications. Even the sensational, perhaps exaggerated applications of AI will be explored in the context of taking a look at how AI may potentially be applied in the future. The purpose of this discussion is for the reader to understand what AI is by understanding how it is used.
Artificial intelligence is certainly a blessing at this point, but the reality that it may become a curse is not lost on some people. Understanding the full implications of AI requires a deep knowledge of what it is and where it came from.
For companies and businesses to take advantage of AI-powered and improved interactions, the conversation has to begin inside the organization. Leaders are supposed to start with the available channels and improve their smartness. From that point, they are supposed to ask key questions about engagements with customers and employees.
Here is a preview of what you will learn...
Brief history of artificial intelligence
The state of art of machine learning
Artificial neural networks applied to machine learning
As data holdings get bigger and questions get harder, data scientists and analysts must focus on the systems, the tools and techniques, and the disciplined process to get the correct answer, quickly Whether you work within industry or government, this book will provide you with a foundation to successfully and confidently process large amounts of quantitative data.
Here are just a dozen of the many questions answered within these pages:
What does quantitative analysis of a system really mean?
What is a system?
What are big data and analystics?
How do you know your numbers are good?
What will the future data science environment look like?
How do you determine data provenance?
How do you gather and process information, and then organize, store, and synthesize it?
How does an organization implement data analytics?
Do you really need to think like a Chief Information Officer?
What is the best way to protect data?
What makes a good dashboard?
What is the relationship between eating ice cream and getting attacked by a shark?
The nine chapters in this book are arranged in three parts that address systems concepts in general, tools and techniques, and future trend topics. Systems concepts include contrasting open and closed systems, performing data mining and big data analysis, and gauging data quality. Tools and techniques include analyzing both continuous and discrete data, applying probability basics, and practicing quantitative analysis such as descriptive and inferential statistics. Future trends include leveraging the Internet of Everything, modeling Artificial Intelligence, and establishing a Data Analytics Support Office (DASO).
Many examples are included that were generated using common software, such as Excel, Minitab, Tableau, SAS, and Crystal Ball. While words are good, examples can sometimes be a better teaching tool. For each example included, data files can be found on the companion website. Many of the data sets are tied to the global economy because they use data from shipping ports, air freight hubs, largest cities, and soccer teams. The appendices contain more detailed analysis including the 10 T's for Data Mining, Million Row Data Audit (MRDA) Processes, Analysis of Rainfall, and Simulation Models for Evaluating Traffic Flow.
Автор: Moses Strydom, Sheryl Buckley Название: AI and Big Data`s Potential for Disruptive Innovation ISBN: 1522596887 ISBN-13(EAN): 9781522596882 Издательство: Mare Nostrum (Eurospan) Цена: 166320.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Big data and artificial intelligence (AI) are at the forefront of technological advances that represent a potential transformational mega-trendÔÇöa new multipolar and innovative disruption. These technologies, and their associated management paradigm, are already rapidly impacting many industries and occupations, but in some sectors, the change is just beginning. Innovating ahead of emerging technologies is the new imperative for any organization that aspires to succeed in the next decade. Faced with the power of this AI movement, it is imperative to understand the dynamics and new codes required by the disruption and to adapt accordingly. AI and Big Data's Potential for Disruptive Innovation provides emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative technologies in a variety of sectors including business, transportation, and healthcare. Featuring coverage on a broad range of topics such as semantic mapping, ethics in AI, and big data governance, this book is ideally designed for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research on the production of new and innovative mechanization and its disruptions.
Автор: Damlapinar Mert Название: Analytics of Life: Making Sense of Artificial Intelligence, Machine Learning and Data Analytic ISBN: 1098300971 ISBN-13(EAN): 9781098300975 Издательство: Неизвестно Рейтинг: Цена: 35820.00 T Наличие на складе: Невозможна поставка. Описание: This book provides the original Latin texts with new explanatory annotated translations of two philosophical works by Anton Wilhelm Amo (c.1703-after 1752), the first African philosopher in early modern Europe. It also includes an extensive introduction intended to help readers contextualize and engage with his philosophical ideas and their historical and intellectual background and significance.
Название: Artificial intelligence trends for data analytics using machine learning and deep learning approaches ISBN: 0367417278 ISBN-13(EAN): 9780367417277 Издательство: Taylor&Francis Рейтинг: Цена: 163330.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems.
Автор: Moses Strydom, Sheryl Buckley Название: AI and Big Data`s Potential for Disruptive Innovation ISBN: 1522596879 ISBN-13(EAN): 9781522596875 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 201430.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Provides emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative technologies in a variety of sectors including business, transportation, and healthcare.
Автор: Saxena Ankur, Brault Nicolas, Rashid Shazia Название: Big Data and Artificial Intelligence for Healthcare Applications ISBN: 036755495X ISBN-13(EAN): 9780367554958 Издательство: Taylor&Francis Рейтинг: Цена: 148010.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book covers a wide range of topics on the role of Artificial Intelligence, Machine Learning, and Big Data for healthcare applications and deals with the ethical issues and concerns associated with it. This book explores the applications in different areas of healthcare and highlights the current research.
Автор: Kwang-Cheng Chen Название: Artificial Intelligence in Wireless Robotics ISBN: 8770221189 ISBN-13(EAN): 9788770221184 Издательство: Taylor&Francis Рейтинг: Цена: 99010.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Robots, autonomous vehicles, unmanned aerial vehicles, and smart factory, will significantly change human living style in digital society. Artificial Intelligence in Wireless Robotics introduces how wireless communications and networking technology enhances facilitation of artificial intelligence in robotics, which bridges basic multi-disciplinary knowledge among artificial intelligence, wireless communications, computing, and control in robotics. A unique aspect of the book is to introduce applying communication and signal processing techniques to enhance traditional artificial intelligence in robotics and multi-agent systems.
The technical contents of this book include fundamental knowledge in robotics, cyber-physical systems, artificial intelligence, statistical decision and Markov decision process, reinforcement learning, state estimation, localization, computer vision and multi-modal data fusion, robot planning, multi-agent systems, networked multi-agent systems, security and robustness of networked robots, and ultra-reliable and low-latency machine-to-machine networking. Examples and exercises are provided for easy and effective comprehension.
Engineers wishing to extend knowledge in the robotics, AI, and wireless communications, would be benefited from this book. In the meantime, the book is ready as a textbook for senior undergraduate students or first-year graduate students in electrical engineering, computer engineering, computer science, and general engineering students. The readers of this book shall have basic knowledge in undergraduate probability and linear algebra, and basic programming capability, in order to enjoy deep reading.
Автор: Alex Lui, Anna Farzinder, Mingboo Gong Название: Transforming Healthcare with Big Data and AI ISBN: 1641138971 ISBN-13(EAN): 9781641138970 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 47130.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Healthcare and technology are at a convergence point where significant changes are poised to take place. The vast and complex requirements of medical record keeping, coupled with stringent patient privacy laws, create an incredibly unwieldy maze of health data needs. While the past decade has seen giant leaps in AI, machine learning, wearable technologies, and data mining capacities that have enabled quantities of data to be accumulated, processed, and shared around the globe. Transforming Healthcare with Big Data and AI examines the crossroads of these two fields and looks to the future of leveraging advanced technologies and developing data ecosystems to the healthcare field.
This book is the product of the Transforming Healthcare with Data conference, held at the University of Southern California. Many speakers and digital healthcare industry leaders contributed multidisciplinary expertise to chapters in this work. Authors’ backgrounds range from data scientists, healthcare experts, university professors, and digital healthcare entrepreneurs. If you have an understanding of data technologies and are interested in the future of Big Data and A.I. in healthcare, this book will provide a wealth of insights into the new landscape of healthcare.
Автор: J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Pandian Vasant Название: Deep Learning Techniques and Optimization Strategies in Big Data Analytics ISBN: 179981193X ISBN-13(EAN): 9781799811930 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 180180.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.
Автор: J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Название: Deep Learning Techniques and Optimization Strategies in Big Data Analytics ISBN: 1799811921 ISBN-13(EAN): 9781799811923 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 239310.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz