Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

The Art of Feature Engineering: Essentials for Machine Learning, Pablo Duboue


Варианты приобретения
Цена: 46470.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 12 шт.  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Pablo Duboue
Название:  The Art of Feature Engineering: Essentials for Machine Learning
Перевод названия: Пабло Дубуэ: Искусство конструирования признаков. Основы машинного обучения
ISBN: 9781108709385
Издательство: Cambridge Academ
Классификация:




ISBN-10: 1108709389
Обложка/Формат: Paperback
Страницы: 283
Вес: 0.38 кг.
Дата издания: 30.06.2020
Серия: Computing & IT
Язык: English
Иллюстрации: Worked examples or exercises
Размер: 228 x 152 x 16
Читательская аудитория: Professional and scholarly
Ключевые слова: Machine learning,Artificial intelligence,Mathematical theory of computation,Data mining,Database programming,Software Engineering, COMPUTERS / Computer Vision & Pattern Recognition
Подзаголовок: Essentials for machine learning
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: This is a guide for data scientists who want to use feature engineering to improve the performance of their machine learning solutions. The book provides a unified view of the field, beginning with basic concepts and techniques, followed by a cross-domain approach to advanced topics, like texts and images, with hands-on case studies.

Recent Advances in Ensembles for Feature Selection

Автор: Bol?n-Canedo
Название: Recent Advances in Ensembles for Feature Selection
ISBN: 331990079X ISBN-13(EAN): 9783319900797
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method.

Unsupervised Feature Extraction Applied to Bioinformatics

Автор: Y-h. Taguchi
Название: Unsupervised Feature Extraction Applied to Bioinformatics
ISBN: 3030224554 ISBN-13(EAN): 9783030224554
Издательство: Springer
Рейтинг:
Цена: 149060.00 T
Наличие на складе: Поставка под заказ.
Описание: This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.

Allows readers to analyze data sets with small samples and many features;Provides a fast algorithm, based upon linear algebra, to analyze big data;Includes several applications to multi-view data analyses, with a focus on bioinformatics.

Probabilistic and Biologically Inspired Feature Representations

Автор: Michael Felsberg
Название: Probabilistic and Biologically Inspired Feature Representations
ISBN: 1681730235 ISBN-13(EAN): 9781681730233
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 46200.00 T
Наличие на складе: Невозможна поставка.
Описание: Under the title Probabilistic and Biologically Inspired Feature Representations, this text collects a substantial amount of work on the topic of channel representations. Channel representations are a biologically motivated, wavelet-like approach to visual feature descriptors: they are local and compact, they form a computational framework, and the represented information can be reconstructed. The first property is shared with many histogram- and signature-based descriptors, the latter property with the related concept of population codes. In their unique combination of properties, channel representations become a visual Swiss army knife—they can be used for image enhancement, visual object tracking, as 2D and 3D descriptors, and for pose estimation. In the chapters of this text, the framework of channel representations will be introduced and its attributes will be elaborated, as well as further insight into its probabilistic modeling and algorithmic implementation will be given. Channel representations are a useful toolbox to represent visual information for machine learning, as they establish a generic way to compute popular descriptors such as HOG, SIFT, and SHOT. Even in an age of deep learning, they provide a good compromise between hand-designed descriptors and a-priori structureless feature spaces as seen in the layers of deep networks.

Feature Engineering for Machine Learning

Автор: Zheng Alice
Название: Feature Engineering for Machine Learning
ISBN: 1491953241 ISBN-13(EAN): 9781491953242
Издательство: Wiley
Рейтинг:
Цена: 55960.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Feature engineering is a crucial step in the machine-learning pipeline, yet this topic is rarely examined on its own. With this practical book, you`ll learn techniques for extracting and transforming features-the numeric representations of raw data-into formats for machine-learning models.

Probabilistic and Biologically Inspired Feature Representations

Автор: Michael Felsberg
Название: Probabilistic and Biologically Inspired Feature Representations
ISBN: 1681733668 ISBN-13(EAN): 9781681733661
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 66530.00 T
Наличие на складе: Невозможна поставка.
Описание: pacote do Courseware consiste em duas publicacoes, VeriSMTM - Foundation Courseware e VeriSM - Foundation Study Guide. Este material de treinamento abrange o plano de estudos para a qualificacao da Fundacao VeriSM . O treinamento pode ser entregue em dois dias. Este material didatico e credenciado para preparar o aluno para a certificacao da VeriSM Foundation. O VeriSM Foundation consiste em duas partes: VeriSM Essentials e VeriSM Plus, cada uma cobrindo um dia de treinamento.Os alunos que ja possuem um certificado de Gerenciamento de Servicos (TI) podem se beneficiar do conhecimento que ja possuem. Eles sao o publico-alvo de apenas um treinamento do VeriSM Plus. Ao serem aprovados no exame VeriSM Plus, recebem o certificado VeriSM Foundation.Provedores de treinamento que desejam oferecer um treinamento de um dia sobre principios de gerenciamento de servicos podem decidir oferecer apenas o treinamento VeriSM Essentials. Os alunos que forem aprovados no exame VeriSM Essentials receberao o certificado VeriSM Essentials. Se eles passarem no exame VeriSM Plus mais tarde, receberao automaticamente o certificado VeriSM Foundation.O "courseware" abrange os seguintes topicos:A organizacao do servico (Essentials)Cultura de servico (Essentials)Pessoas e estrutura organizacional (Essentials)O modelo VeriSM (ambos)Praticas Progressivas (Plus)Tecnologias Inovadoras (Plus)O VeriSM e uma abordagem holistica e orientada aos negocios para o Gerenciamento de Servicos, que ajuda a entender o panorama crescente das melhores praticas e como integra-las para oferecer valor ao consumidor.E uma evolucao no pensamento em Gerenciamento de Servicos e oferece uma abordagem atualizada, incluindo as mais recentes praticas e desenvolvimentos tecnologicos, para ajudar as organizacoes a transformar seus negocios para a nova realidade da era digital.O VeriSM e um gerenciamento orientado a valor, evolutivo, responsivo e integrado.VeriSM e uma marca registrada e propriedade da IFDC, a Fundacao Internacional de Competencias Digitais.

Grammar-Based Feature Generation for Time-Series Prediction

Автор: Anthony Mihirana De Silva; Philip H. W. Leong
Название: Grammar-Based Feature Generation for Time-Series Prediction
ISBN: 9812874100 ISBN-13(EAN): 9789812874108
Издательство: Springer
Рейтинг:
Цена: 56590.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself.

Feature-Oriented Software Product Lines

Автор: Sven Apel; Don Batory; Christian K?stner; Gunter S
Название: Feature-Oriented Software Product Lines
ISBN: 3662513005 ISBN-13(EAN): 9783662513002
Издательство: Springer
Рейтинг:
Цена: 60550.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book focuses on the development, maintenance, and implementation of product-line variability. It features a broad classification of tools and techniques for all stages of the development process and a detailed discussion of tradeoffs.

A Beginner`s Guide to Image Shape Feature Extraction Techniques

Автор: Jyotismita Chaki, Nilanjan Dey
Название: A Beginner`s Guide to Image Shape Feature Extraction Techniques
ISBN: 0367254395 ISBN-13(EAN): 9780367254391
Издательство: Taylor&Francis
Рейтинг:
Цена: 93910.00 T
Наличие на складе: Невозможна поставка.
Описание: This book emphasizes various image shape feature extraction methods which are necessary for image shape recognition and classification. Focussing on a shape feature extraction technique used in content-based image retrieval (CBIR), it explains different applications of image shape features in the field of content-based image retrieval.

Texture Feature Extraction Techniques for Image Recognition

Автор: Jyotismita Chaki; Nilanjan Dey
Название: Texture Feature Extraction Techniques for Image Recognition
ISBN: 9811508526 ISBN-13(EAN): 9789811508523
Издательство: Springer
Рейтинг:
Цена: 51230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book describes various texture feature extraction approaches and texture analysis applications. It introduces and discusses the importance of texture features, and describes various types of texture features like statistical, structural, signal-processed and model-based.

Prominent Feature Extraction for Sentiment Analysis

Автор: Basant Agarwal; Namita Mittal
Название: Prominent Feature Extraction for Sentiment Analysis
ISBN: 3319253417 ISBN-13(EAN): 9783319253411
Издательство: Springer
Рейтинг:
Цена: 121890.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

1 Introduction

2 Literature Survey

3 Machine Learning Approach for Sentiment Analysis

4 Semantic Parsing using Dependency Rules

5 Sentiment Analysis using ConceptNet Ontology and Context

Information

6 Semantic Orientation based Approach for Sentiment Analysis

7 Conclusions and FutureWork

References

Glossary
Index


Advances in Feature Selection for Data and Pattern Recognition

Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain
Название: Advances in Feature Selection for Data and Pattern Recognition
ISBN: 3319884522 ISBN-13(EAN): 9783319884523
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Поставка под заказ.
Описание:

This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of latest advances.

The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions, and new applications. Some of the advances presented focus on theoretical approaches, introducing novel propositions highlighting and discussing properties of objects, and analysing the intricacies of processes and bounds on computational complexity, while others are dedicated to the specific requirements of application domains or the particularities of tasks waiting to be solved or improved.

Divided into four parts – nature and representation of data; ranking and exploration of features; image, shape, motion, and audio detection and recognition; decision support systems, it is of great interest to a large section of researchers including students, professors and practitioners.

Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications

Автор: Raza Muhammad Summair, Qamar Usman
Название: Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications
ISBN: 9813291656 ISBN-13(EAN): 9789813291652
Издательство: Springer
Рейтинг:
Цена: 83850.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a comprehensive introduction to rough set-based feature selection. Rough set theory, first proposed by Zdzislaw Pawlak in 1982, continues to evolve. Concerned with the classification and analysis of imprecise or uncertain information and knowledge, it has become a prominent tool for data analysis, and enables the reader to systematically study all topics in rough set theory (RST) including preliminaries, advanced concepts, and feature selection using RST. The book is supplemented with an RST-based API library that can be used to implement several RST concepts and RST-based feature selection algorithms.The book provides an essential reference guide for students, researchers, and developers working in the areas of feature selection, knowledge discovery, and reasoning with uncertainty, especially those who are working in RST and granular computing. The primary audience of this book is the research community using rough set theory (RST) to perform feature selection (FS) on large-scale datasets in various domains. However, any community interested in feature selection such as medical, banking, and finance can also benefit from the book. This second edition also covers the dominance-based rough set approach and fuzzy rough sets. The dominance-based rough set approach (DRSA) is an extension of the conventional rough set approach and supports the preference order using the dominance principle. In turn, fuzzy rough sets are fuzzy generalizations of rough sets. An API library for the DRSA is also provided with the second edition of the book.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия