Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Text data mining, Zong, Chengqing Xia, Rui Zhang, Jiajun


Варианты приобретения
Цена: 55890.00T
Кол-во:
 о цене
Наличие: Невозможна поставка.

в Мои желания

Автор: Zong, Chengqing Xia, Rui Zhang, Jiajun
Название:  Text data mining
Перевод названия: Чэнцин Цзун, Руй Ся, Цзяньцзюнь Чжан: Добыча текстовых данных
ISBN: 9789811600999
Издательство: Springer
Классификация:



ISBN-10: 9811600996
Обложка/Формат: Hardcover
Страницы: 353
Вес: 0.78 кг.
Дата издания: 16.04.2021
Язык: English
Издание: 1st ed. 2021
Иллюстрации: 7 illustrations, color; 207 illustrations, black and white; xxi, 351 p. 214 illus., 7 illus. in color.; 7 illustrations, color; 207 illustrations, bla
Размер: 23.88 x 19.81 x 2.29 cm
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Murder seems to follow young Tommy McBride everywhere. Only five years after the death of his family, a freak accident on a sheep station sends him fleeing into the wilderness of the Australian outback, the station overseer lying dead behind him with his head smashed on a rock. But Tommy is haunted by more than the death of his family - both he and his brother Billy witnessed a vicious state-sanctioned massacre of the Kurrong people, and they havent seen each other since.When an official inquiry is launched into the slaughter, the successful life that Billy has built for himself is under threat. He desperately needs to find his brother, long

Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing

Автор: Ron Kohavi, Diane Tang, Ya Xu
Название: Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing
ISBN: 1108724264 ISBN-13(EAN): 9781108724265
Издательство: Cambridge Academ
Рейтинг:
Цена: 45050.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Getting numbers is easy; getting trustworthy numbers is hard. From experimentation leaders at Amazon, Google, LinkedIn, and Microsoft, this guide to accelerating innovation using A/B tests includes practical examples, pitfalls, and advice for students and industry professionals, plus deeper dives into advanced topics for experienced practitioners.

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 61750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book

Mining Text Data

Автор: Charu C. Aggarwal; ChengXiang Zhai
Название: Mining Text Data
ISBN: 148998920X ISBN-13(EAN): 9781489989208
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining.

Multidimensional Mining of Massive Text Data

Автор: Zhang Chao, Han Jiawei
Название: Multidimensional Mining of Massive Text Data
ISBN: 1681735199 ISBN-13(EAN): 9781681735191
Издательство: Mare Nostrum (Eurospan)
Цена: 77610.00 T
Наличие на складе: Невозможна поставка.
Описание:

Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional-they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task.

This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions? (2) How does one distill knowledge from text data in a multidimensional space? To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making.

The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain.


Mining Structures of Factual Knowledge from Text: An Effort-Light Approach

Автор: Xiang Ren, Jiawei Han
Название: Mining Structures of Factual Knowledge from Text: An Effort-Light Approach
ISBN: 1681733943 ISBN-13(EAN): 9781681733944
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 102570.00 T
Наличие на складе: Невозможна поставка.
Описание: The real-world data, though massive, is largely unstructured, in the form of natural-language text. It is challenging but highly desirable to mine structures from massive text data, without extensive human annotation and labeling. In this book, we investigate the principles and methodologies of mining structures of factual knowledge (e.g., entities and their relationships) from massive, unstructured text corpora.Departing from many existing structure extraction methods that have heavy reliance on human annotated data for model training, our effort-light approach leverages human-curated facts stored in external knowledge bases as distant supervision and exploits rich data redundancy in large text corpora for context understanding. This effort-light mining approach leads to a series of new principles and powerful methodologies for structuring text corpora, including (1) entity recognition, typing and synonym discovery, (2) entity relation extraction, and (3) open-domain attribute-value mining and information extraction. This book introduces this new research frontier and points out some promising research directions.

Mining Structures of Factual Knowledge from Text: An Effort-Light Approach

Автор: Xiang Ren, Jiawei Han
Название: Mining Structures of Factual Knowledge from Text: An Effort-Light Approach
ISBN: 1681733927 ISBN-13(EAN): 9781681733920
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 82230.00 T
Наличие на складе: Невозможна поставка.
Описание: The real-world data, though massive, is largely unstructured, in the form of natural-language text. It is challenging but highly desirable to mine structures from massive text data, without extensive human annotation and labeling. In this book, we investigate the principles and methodologies of mining structures of factual knowledge (e.g., entities and their relationships) from massive, unstructured text corpora.Departing from many existing structure extraction methods that have heavy reliance on human annotated data for model training, our effort-light approach leverages human-curated facts stored in external knowledge bases as distant supervision and exploits rich data redundancy in large text corpora for context understanding. This effort-light mining approach leads to a series of new principles and powerful methodologies for structuring text corpora, including (1) entity recognition, typing and synonym discovery, (2) entity relation extraction, and (3) open-domain attribute-value mining and information extraction. This book introduces this new research frontier and points out some promising research directions.

Phrase Mining from Massive Text and Its Applications

Автор: Jialu Liu, Jingbo Shang, Jiawei Han
Название: Phrase Mining from Massive Text and Its Applications
ISBN: 1627058982 ISBN-13(EAN): 9781627058988
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 41580.00 T
Наличие на складе: Невозможна поставка.
Описание: Investigates one promising paradigm for representing unstructured text, that is, through automatically identifying high-quality phrases from innumerable documents. This volume proposes new principles and powerful methodologies, from the scenario where a user can provide meaningful guidance to a fully automated setting through distant learning.

Machine Learning for Text

Автор: Charu C. Aggarwal
Название: Machine Learning for Text
ISBN: 3030088073 ISBN-13(EAN): 9783030088071
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Text analytics is a field that lies on the interface of information retrieval,machine learning, and natural language processing, and this textbook carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this textbook is organized into three categories:- Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for machine learning from text such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis.- Domain-sensitive mining: Chapters 8 and 9 discuss the learning methods from text when combined with different domains such as multimedia and the Web. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. - Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection. This textbook covers machine learning topics for text in detail. Since the coverage is extensive,multiple courses can be offered from the same book, depending on course level. Even though the presentation is text-centric, Chapters 3 to 7 cover machine learning algorithms that are often used indomains beyond text data. Therefore, the book can be used to offer courses not just in text analytics but also from the broader perspective of machine learning (with text as a backdrop). This textbook targets graduate students in computer science, as well as researchers, professors, and industrial practitioners working in these related fields. This textbook is accompanied with a solution manual for classroom teaching.

Multidimensional Mining of Massive Text Data

Автор: Chao Zhang, Jiawei Han
Название: Multidimensional Mining of Massive Text Data
ISBN: 1681735210 ISBN-13(EAN): 9781681735214
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 97950.00 T
Наличие на складе: Нет в наличии.
Описание: Unstructured text, as one of the most important data forms, plays a crucial role in data-driven decision making in domains ranging from social networking and information retrieval to scientific research and healthcare informatics. In many emerging applications, people's information need from text data is becoming multidimensional—they demand useful insights along multiple aspects from a text corpus. However, acquiring such multidimensional knowledge from massive text data remains a challenging task. This book presents data mining techniques that turn unstructured text data into multidimensional knowledge. We investigate two core questions. (1) How does one identify task-relevant text data with declarative queries in multiple dimensions? (2) How does one distill knowledge from text data in a multidimensional space? To address the above questions, we develop a text cube framework. First, we develop a cube construction module that organizes unstructured data into a cube structure, by discovering latent multidimensional and multi-granular structure from the unstructured text corpus and allocating documents into the structure. Second, we develop a cube exploitation module that models multiple dimensions in the cube space, thereby distilling from user-selected data multidimensional knowledge. Together, these two modules constitute an integrated pipeline: leveraging the cube structure, users can perform multidimensional, multigranular data selection with declarative queries; and with cube exploitation algorithms, users can extract multidimensional patterns from the selected data for decision making. The proposed framework has two distinctive advantages when turning text data into multidimensional knowledge: flexibility and label-efficiency. First, it enables acquiring multidimensional knowledge flexibly, as the cube structure allows users to easily identify task-relevant data along multiple dimensions at varied granularities and further distill multidimensional knowledge. Second, the algorithms for cube construction and exploitation require little supervision; this makes the framework appealing for many applications where labeled data are expensive to obtain.

Data Mining for Business Analytics: Concepts, Techniques, and Applications with XLMiner

Автор: Galit Shmueli, Peter C. Bruce, Nitin R. Patel
Название: Data Mining for Business Analytics: Concepts, Techniques, and Applications with XLMiner
ISBN: 1118729277 ISBN-13(EAN): 9781118729274
Издательство: Wiley
Рейтинг:
Цена: 118270.00 T
Наличие на складе: Поставка под заказ.
Описание: Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner(R), Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies.

Materials Informatics: Methods, Tools, and Applications

Автор: Isayev O
Название: Materials Informatics: Methods, Tools, and Applications
ISBN: 3527341218 ISBN-13(EAN): 9783527341214
Издательство: Wiley
Рейтинг:
Цена: 102380.00 T
Наличие на складе: Поставка под заказ.
Описание: Provides everything readers need to know for applying the power of informatics to materials science

There is a tremendous interest in materials informatics and application of data mining to materials science. This book is a one-stop guide to the latest advances in these emerging fields. Bridging the gap between materials science and informatics, it introduces readers to up-to-date data mining and machine learning methods. It also provides an overview of state-of-the-art software and tools. Case studies illustrate the power of materials informatics in guiding the experimental discovery of new materials.

Materials Informatics: Methods, Tools and Applications is presented in two parts?Methodological Aspects of Materials Informatics and Practical Aspects and Applications. The first part focuses on developments in software, databases, and high-throughput computational activities. Chapter topics include open quantum materials databases; the ICSD database; open crystallography databases; and more. The second addresses the latest developments in data mining and machine learning for materials science. Its chapters cover genetic algorithms and crystal structure prediction; MQSPR modeling in materials informatics; prediction of materials properties; amongst others.

-Bridges the gap between materials science and informatics
-Covers all the known methodologies and applications of materials informatics
-Presents case studies that illustrate the power of materials informatics in guiding the experimental quest for new materials
-Examines the state-of-the-art software and tools being used today

Materials Informatics: Methods, Tools and Applications is a must-have resource for materials scientists, chemists, and engineers interested in the methods of materials informatics.

Text Mining with R: A Tidy Approach

Автор: Silge Julia Phd, Robinson David Phd
Название: Text Mining with R: A Tidy Approach
ISBN: 1491981652 ISBN-13(EAN): 9781491981658
Издательство: Wiley
Рейтинг:
Цена: 33780.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Tackle a variety of tasks in natural language processing by learning how to use the R language and tidy data principles. This practical guide provides examples and resources to help you get up to speed with dplyr, broom, ggplot2, and other tidy tools from the R ecosystem.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия