Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Text Mining with R: A Tidy Approach, Silge Julia Phd, Robinson David Phd


Варианты приобретения
Цена: 33780.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: 4 шт.  Склад Америка: 241 шт.  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания

Автор: Silge Julia Phd, Robinson David Phd   (Джулия Сильдж)
Название:  Text Mining with R: A Tidy Approach
Перевод названия: Джулия Сильдж: Майнинг текстов с помощью R. Аккуратный подход
ISBN: 9781491981658
Издательство: Wiley
Классификация:
ISBN-10: 1491981652
Обложка/Формат: Paperback
Страницы: 150
Вес: 0.67 кг.
Дата издания: 25.05.2017
Язык: English
Размер: 178 x 232 x 10
Читательская аудитория: Technical / manuals
Подзаголовок: A tidy approach
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Tackle a variety of tasks in natural language processing by learning how to use the R language and tidy data principles. This practical guide provides examples and resources to help you get up to speed with dplyr, broom, ggplot2, and other tidy tools from the R ecosystem.

Survey of Text Mining II

Автор: Michael W. Berry; Malu Castellanos
Название: Survey of Text Mining II
ISBN: 184996713X ISBN-13(EAN): 9781849967136
Издательство: Springer
Рейтинг:
Цена: 88500.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This Second Edition explores the field of text mining. Coverage includes the use of machine learning in conjunction with natural language processing, information extraction, and algebraic/mathematical approaches to computational information retrieval.

Natural Language Processing: The PLNLP Approach

Автор: Karen Jensen; George E. Heidorn; Stephen D. Richar
Название: Natural Language Processing: The PLNLP Approach
ISBN: 1461363896 ISBN-13(EAN): 9781461363897
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This technique is an example of one facet of the PLNLP approach: the use of natural language itself as a knowledge representation language -- an innovation that permits a wide variety of online text materials to be exploited as sources of semantic information.

Text Mining

Автор: Sholom M. Weiss; Nitin Indurkhya; Tong Zhang; Fred
Название: Text Mining
ISBN: 1441929967 ISBN-13(EAN): 9781441929969
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In our view, a prediction problem can be solved by the same methods, whether the data are structured - merical measurements or unstructured text. Text and documents can be transformed into measured values, such as the presence or absence of words, and the same methods that have proven successful for pred- tive data mining can be applied to text.

Phrase Mining from Massive Text and Its Applications

Автор: Jialu Liu, Jingbo Shang, Jiawei Han
Название: Phrase Mining from Massive Text and Its Applications
ISBN: 1627058982 ISBN-13(EAN): 9781627058988
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 41580.00 T
Наличие на складе: Невозможна поставка.
Описание: Investigates one promising paradigm for representing unstructured text, that is, through automatically identifying high-quality phrases from innumerable documents. This volume proposes new principles and powerful methodologies, from the scenario where a user can provide meaningful guidance to a fully automated setting through distant learning.

Clinical Text Mining

Автор: Dalianis
Название: Clinical Text Mining
ISBN: 3319785028 ISBN-13(EAN): 9783319785028
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This open access book describes the results of natural language processing and machine learning methods applied to clinical text from electronic patient records. It is divided into twelve chapters. Chapters 1-4 discuss the history and background of the original paper-based patient records, their purpose, and how they are written and structured. These initial chapters do not require any technical or medical background knowledge. The remaining eight chapters are more technical in nature and describe various medical classifications and terminologies such as ICD diagnosis codes, SNOMED CT, MeSH, UMLS, and ATC. Chapters 5-10 cover basic tools for natural language processing and information retrieval, and how to apply them to clinical text. The difference between rule-based and machine learning-based methods, as well as between supervised and unsupervised machine learning methods, are also explained. Next, ethical concerns regarding the use of sensitive patient records for research purposes are discussed, including methods for de-identifying electronic patient records and safely storing patient records. The book’s closing chapters present a number of applications in clinical text mining and summarise the lessons learned from the previous chapters.The book provides a comprehensive overview of technical issues arising in clinical text mining, and offers a valuable guide for advanced students in health informatics, computational linguistics, and information retrieval, and for researchers entering these fields.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия