Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Foundations of Statistical Algorithms, Weihs, Claus , Mersmann, Olaf , Ligges, Uwe


Варианты приобретения
Цена: 65320.00T
Кол-во:
 о цене
Наличие: Невозможна поставка.

в Мои желания

Автор: Weihs, Claus , Mersmann, Olaf , Ligges, Uwe
Название:  Foundations of Statistical Algorithms
ISBN: 9780367379094
Издательство: Taylor&Francis
Классификация:

ISBN-10: 0367379090
Обложка/Формат: Paperback
Страницы: 500
Вес: 0.93 кг.
Дата издания: 27.09.2019
Серия: Chapman & hall/crc computer science & data analysis
Язык: English
Размер: 234 x 152 x 28
Читательская аудитория: Tertiary education (us: college)
Основная тема: Statistical Theory & Methods
Подзаголовок: With References to R Packages
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание:

A new and refreshingly different approach to presenting the foundations of statistical algorithms, Foundations of Statistical Algorithms: With References to R Packages reviews the historical development of basic algorithms to illuminate the evolution of todays more powerful statistical algorithms. It emphasizes recurring themes in all statistical algorithms, including computation, assessment and verification, iteration, intuition, randomness, repetition and parallelization, and scalability. Unique in scope, the book reviews the upcoming challenge of scaling many of the established techniques to very large data sets and delves into systematic verification by demonstrating how to derive general classes of worst case inputs and emphasizing the importance of testing over a large number of different inputs.

Broadly accessible, the book offers examples, exercises, and selected solutions in each chapter as well as access to a supplementary website. After working through the material covered in the book, readers should not only understand current algorithms but also gain a deeper understanding of how algorithms are constructed, how to evaluate new algorithms, which recurring principles are used to tackle some of the tough problems statistical programmers face, and how to take an idea for a new method and turn it into something practically useful.



The Elements of Statistical Learning

Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman
Название: The Elements of Statistical Learning
ISBN: 0387848576 ISBN-13(EAN): 9780387848570
Издательство: Springer
Рейтинг:
Цена: 69870.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.

Computer Age Statistical Inference

Автор: Bradley Efron and Trevor Hastie
Название: Computer Age Statistical Inference
ISBN: 1107149894 ISBN-13(EAN): 9781107149892
Издательство: Cambridge Academ
Рейтинг:
Цена: 60190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Mathematical Foundations of Infinite-Dimensional Statistical Models

Автор: Gin?
Название: Mathematical Foundations of Infinite-Dimensional Statistical Models
ISBN: 1107043166 ISBN-13(EAN): 9781107043169
Издательство: Cambridge Academ
Рейтинг:
Цена: 99270.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: High-dimensional and nonparametric statistical models are ubiquitous in modern data science. This book develops a mathematically coherent and objective approach to statistical inference in such models, with a focus on function estimation problems arising from random samples (density estimation) or from Gaussian regression/signal in white noise problems.

Statistical Analysis with Missing Data, Third Edit ion

Автор: Little
Название: Statistical Analysis with Missing Data, Third Edit ion
ISBN: 0470526793 ISBN-13(EAN): 9780470526798
Издательство: Wiley
Рейтинг:
Цена: 84430.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reflecting new application topics, Statistical Analysis with Missing Data offers a thoroughly up-to-date, reorganized survey of current methodology for handling missing data problems. The third edition reviews historical approaches to the subject and describe rigorous yet simple methods for multivariate analysis with missing values.

Foundations of Statistical Mechanics

Автор: W.T. Grandy Jr.
Название: Foundations of Statistical Mechanics
ISBN: 9401077975 ISBN-13(EAN): 9789401077972
Издательство: Springer
Рейтинг:
Цена: 139310.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In this volume we continue the logical development of the work begun in Volume I, and the equilibrium theory now becomes a very special case of the exposition presented here.

Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering

Автор: Isra?l C?sar Lerman
Название: Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering
ISBN: 1447167910 ISBN-13(EAN): 9781447167914
Издательство: Springer
Рейтинг:
Цена: 153720.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Preface.- On Some Facets of the Partition Set of a Finite Set.- Two Methods of Non-hierarchical Clustering.- Structure and Mathematical Representation of Data.- Ordinal and Metrical Analysis of the Resemblance Notion.- Comparing Attributes by a Probabilistic and Statistical Association I.- Comparing Attributes by a Probabilistic and Statistical Association II.- Comparing Objects or Categories Described by Attributes.- The Notion of "Natural" Class, Tools for its Interpretation. The Classifiability Concept.- Quality Measures in Clustering.- Building a Classification Tree.- Applying the LLA Method to Real Data.- Conclusion and Thoughts for Future Works


Foundations of Applied Statistical Methods

Автор: Hang Lee
Название: Foundations of Applied Statistical Methods
ISBN: 3319347241 ISBN-13(EAN): 9783319347240
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Driven by real-world examples, this book covers applied statistical methods in a concise and easily accessible way. Coverage includes essential probability models, inference of means, proportions, correlations and regressions, and sample size determination.

Probabilistic Foundations of Statistical Network Analysis

Автор: Crane
Название: Probabilistic Foundations of Statistical Network Analysis
ISBN: 1138585998 ISBN-13(EAN): 9781138585997
Издательство: Taylor&Francis
Рейтинг:
Цена: 132710.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE. ? ? ? ? ? ?

Stochastic Algorithms: Foundations and Applications

Автор: Osamu Watanabe; Thomas Zeugmann
Название: Stochastic Algorithms: Foundations and Applications
ISBN: 3642049435 ISBN-13(EAN): 9783642049439
Издательство: Springer
Рейтинг:
Цена: 65210.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the 5th International Symposium on Stochastic Algorithms, Foundations and Applications, SAGA 2009, held in Sapporo, Japan, in October 2009. The 15 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 22 submissions.

Noise Sensitivity of Boolean Functions and Percolation

Автор: Garban
Название: Noise Sensitivity of Boolean Functions and Percolation
ISBN: 1107432553 ISBN-13(EAN): 9781107432550
Издательство: Cambridge Academ
Рейтинг:
Цена: 40130.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This account of the new and exciting area of noise sensitivity of Boolean functions - in particular applied to critical percolation - is designed for graduate students and researchers in probability theory, discrete mathematics, and theoretical computer science. It assumes a basic background in probability theory and integration theory. Each chapter ends with exercises.

An Introduction to Statistical Learning

Автор: James Gareth
Название: An Introduction to Statistical Learning
ISBN: 1461471370 ISBN-13(EAN): 9781461471370
Издательство: Springer
Рейтинг:
Цена: 60550.00 T
Наличие на складе: Невозможна поставка.
Описание: This book presents key modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, and clustering.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия