Автор: Munish Kumar, Manish Kumar Jindal, Simpel Rani Jindal, R. K. Sharma, Anupam Garg Название: Feature Extraction and Classification Techniques for Text Recognition ISBN: 1799824071 ISBN-13(EAN): 9781799824077 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 194970.00 T Наличие на складе: Невозможна поставка. Описание: Presents research on the fusion and hybridization of various features and classifiers for document analysis and recognition. The book provides coverage of a range of topics, including adaptive boosting, writer identification, and signature verification.
Автор: Jyotismita Chaki, Nilanjan Dey Название: A Beginner`s Guide to Image Shape Feature Extraction Techniques ISBN: 0367254395 ISBN-13(EAN): 9780367254391 Издательство: Taylor&Francis Рейтинг: Цена: 93910.00 T Наличие на складе: Невозможна поставка. Описание: This book emphasizes various image shape feature extraction methods which are necessary for image shape recognition and classification. Focussing on a shape feature extraction technique used in content-based image retrieval (CBIR), it explains different applications of image shape features in the field of content-based image retrieval.
Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain Название: Advances in Feature Selection for Data and Pattern Recognition ISBN: 3319884522 ISBN-13(EAN): 9783319884523 Издательство: Springer Рейтинг: Цена: 139750.00 T Наличие на складе: Поставка под заказ. Описание:
This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of latest advances.
The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions, and new applications. Some of the advances presented focus on theoretical approaches, introducing novel propositions highlighting and discussing properties of objects, and analysing the intricacies of processes and bounds on computational complexity, while others are dedicated to the specific requirements of application domains or the particularities of tasks waiting to be solved or improved.
Divided into four parts – nature and representation of data; ranking and exploration of features; image, shape, motion, and audio detection and recognition; decision support systems, it is of great interest to a large section of researchers including students, professors and practitioners.
Автор: Pramod Kumar Pisharady; Prahlad Vadakkepat; Loh Ai Название: Computational Intelligence in Multi-Feature Visual Pattern Recognition ISBN: 9811011710 ISBN-13(EAN): 9789811011719 Издательство: Springer Рейтинг: Цена: 104480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds.
Автор: Kristin J. Dana Название: Computational Texture and Patterns: From Textons to Deep Learning ISBN: 1681730111 ISBN-13(EAN): 9781681730110 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 51750.00 T Наличие на складе: Невозможна поставка. Описание: Visual pattern analysis is a fundamental tool in mining data for knowledge. Computational representations for patterns and texture allow us to summarize, store, compare, and label in order to learn about the physical world. Our ability to capture visual imagery with cameras and sensors has resulted in vast amounts of raw data, but using this information effectively in a task-specific manner requires sophisticated computational representations. We enumerate specific desirable traits for these representations: (1) intraclass invariance—to support recognition; (2) illumination and geometric invariance for robustness to imaging conditions; (3) support for prediction and synthesis to use the model to infer continuation of the pattern; (4) support for change detection to detect anomalies and perturbations; and (5) support for physics-based interpretation to infer system properties from appearance. In recent years, computer vision has undergone a metamorphosis with classic algorithms adapting to new trends in deep learning. This text provides a tour of algorithm evolution including pattern recognition, segmentation and synthesis. We consider the general relevance and prominence of visual pattern analysis and applications that rely on computational models.
Автор: Michael Felsberg Название: Probabilistic and Biologically Inspired Feature Representations ISBN: 1681733668 ISBN-13(EAN): 9781681733661 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 66530.00 T Наличие на складе: Невозможна поставка. Описание: pacote do Courseware consiste em duas publicacoes, VeriSMTM - Foundation Courseware e VeriSM - Foundation Study Guide. Este material de treinamento abrange o plano de estudos para a qualificacao da Fundacao VeriSM . O treinamento pode ser entregue em dois dias. Este material didatico e credenciado para preparar o aluno para a certificacao da VeriSM Foundation. O VeriSM Foundation consiste em duas partes: VeriSM Essentials e VeriSM Plus, cada uma cobrindo um dia de treinamento.Os alunos que ja possuem um certificado de Gerenciamento de Servicos (TI) podem se beneficiar do conhecimento que ja possuem. Eles sao o publico-alvo de apenas um treinamento do VeriSM Plus. Ao serem aprovados no exame VeriSM Plus, recebem o certificado VeriSM Foundation.Provedores de treinamento que desejam oferecer um treinamento de um dia sobre principios de gerenciamento de servicos podem decidir oferecer apenas o treinamento VeriSM Essentials. Os alunos que forem aprovados no exame VeriSM Essentials receberao o certificado VeriSM Essentials. Se eles passarem no exame VeriSM Plus mais tarde, receberao automaticamente o certificado VeriSM Foundation.O "courseware" abrange os seguintes topicos:A organizacao do servico (Essentials)Cultura de servico (Essentials)Pessoas e estrutura organizacional (Essentials)O modelo VeriSM (ambos)Praticas Progressivas (Plus)Tecnologias Inovadoras (Plus)O VeriSM e uma abordagem holistica e orientada aos negocios para o Gerenciamento de Servicos, que ajuda a entender o panorama crescente das melhores praticas e como integra-las para oferecer valor ao consumidor.E uma evolucao no pensamento em Gerenciamento de Servicos e oferece uma abordagem atualizada, incluindo as mais recentes praticas e desenvolvimentos tecnologicos, para ajudar as organizacoes a transformar seus negocios para a nova realidade da era digital.O VeriSM e um gerenciamento orientado a valor, evolutivo, responsivo e integrado.VeriSM e uma marca registrada e propriedade da IFDC, a Fundacao Internacional de Competencias Digitais.
Автор: Michael Felsberg Название: Probabilistic and Biologically Inspired Feature Representations ISBN: 1681730235 ISBN-13(EAN): 9781681730233 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 46200.00 T Наличие на складе: Невозможна поставка. Описание: Under the title Probabilistic and Biologically Inspired Feature Representations, this text collects a substantial amount of work on the topic of channel representations. Channel representations are a biologically motivated, wavelet-like approach to visual feature descriptors: they are local and compact, they form a computational framework, and the represented information can be reconstructed. The first property is shared with many histogram- and signature-based descriptors, the latter property with the related concept of population codes. In their unique combination of properties, channel representations become a visual Swiss army knife—they can be used for image enhancement, visual object tracking, as 2D and 3D descriptors, and for pose estimation. In the chapters of this text, the framework of channel representations will be introduced and its attributes will be elaborated, as well as further insight into its probabilistic modeling and algorithmic implementation will be given. Channel representations are a useful toolbox to represent visual information for machine learning, as they establish a generic way to compute popular descriptors such as HOG, SIFT, and SHOT. Even in an age of deep learning, they provide a good compromise between hand-designed descriptors and a-priori structureless feature spaces as seen in the layers of deep networks.
Автор: Pablo Duboue Название: The Art of Feature Engineering: Essentials for Machine Learning ISBN: 1108709389 ISBN-13(EAN): 9781108709385 Издательство: Cambridge Academ Рейтинг: Цена: 46470.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This is a guide for data scientists who want to use feature engineering to improve the performance of their machine learning solutions. The book provides a unified view of the field, beginning with basic concepts and techniques, followed by a cross-domain approach to advanced topics, like texts and images, with hands-on case studies.
Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain Название: Advances in Feature Selection for Data and Pattern Recognition ISBN: 3319675877 ISBN-13(EAN): 9783319675879 Издательство: Springer Рейтинг: Цена: 139750.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of recent advances. The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions and new applications.
Автор: Y-h. Taguchi Название: Unsupervised Feature Extraction Applied to Bioinformatics ISBN: 3030224554 ISBN-13(EAN): 9783030224554 Издательство: Springer Рейтинг: Цена: 149060.00 T Наличие на складе: Поставка под заказ. Описание: This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.
Allows readers to analyze data sets with small samples and many features;Provides a fast algorithm, based upon linear algebra, to analyze big data;Includes several applications to multi-view data analyses, with a focus on bioinformatics.
Автор: Isabelle Guyon; Steve Gunn; Masoud Nikravesh; Loft Название: Feature Extraction ISBN: 366251771X ISBN-13(EAN): 9783662517710 Издательство: Springer Рейтинг: Цена: 278580.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book is both a reference for engineers and scientists and a teaching resource, featuring tutorial chapters and research papers on feature extraction. Until now there has been insufficient consideration of feature selection algorithms, no unified presentation of leading methods, and no systematic comparisons.
Автор: Raza Muhammad Summair, Qamar Usman Название: Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications ISBN: 9813291656 ISBN-13(EAN): 9789813291652 Издательство: Springer Рейтинг: Цена: 83850.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book provides a comprehensive introduction to rough set-based feature selection. Rough set theory, first proposed by Zdzislaw Pawlak in 1982, continues to evolve. Concerned with the classification and analysis of imprecise or uncertain information and knowledge, it has become a prominent tool for data analysis, and enables the reader to systematically study all topics in rough set theory (RST) including preliminaries, advanced concepts, and feature selection using RST. The book is supplemented with an RST-based API library that can be used to implement several RST concepts and RST-based feature selection algorithms.The book provides an essential reference guide for students, researchers, and developers working in the areas of feature selection, knowledge discovery, and reasoning with uncertainty, especially those who are working in RST and granular computing. The primary audience of this book is the research community using rough set theory (RST) to perform feature selection (FS) on large-scale datasets in various domains. However, any community interested in feature selection such as medical, banking, and finance can also benefit from the book. This second edition also covers the dominance-based rough set approach and fuzzy rough sets. The dominance-based rough set approach (DRSA) is an extension of the conventional rough set approach and supports the preference order using the dominance principle. In turn, fuzzy rough sets are fuzzy generalizations of rough sets. An API library for the DRSA is also provided with the second edition of the book.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz