Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation, Charles Collot, Pierre Raphael, Jeremie Szeftel


Варианты приобретения
Цена: 83160.00T
Кол-во:
 о цене
Наличие: Отсутствует. 
Возможна поставка под заказ. Дата поступления на склад уточняется после оформления заказа


Добавить в корзину
в Мои желания

Автор: Charles Collot, Pierre Raphael, Jeremie Szeftel
Название:  On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation
ISBN: 9781470436261
Издательство: Mare Nostrum (Eurospan)
Классификация:

ISBN-10: 1470436264
Обложка/Формат: Paperback
Страницы: 93
Вес: 0.21 кг.
Дата издания: 30.10.2019
Серия: Memoirs of the american mathematical society
Язык: English
Размер: H 254 X W 178
Читательская аудитория: Professional and scholarly
Ключевые слова: Differential calculus & equations
Рейтинг:
Поставляется из: Англии
Описание: The authors consider the energy super critical semilinear heat equation $\partial _{t}u=\Delta u u^{p}, x\in \mathbb{R}^3, p>5.$. The authors draws a route map for the derivation of the existence and stability of self-similar blow up in nonradial energy super critical settings.

On Space-Time Quasiconcave Solutions of the Heat Equation

Автор: Chuanqiang Chen, Xinan Ma, Paolo Salani
Название: On Space-Time Quasiconcave Solutions of the Heat Equation
ISBN: 1470435241 ISBN-13(EAN): 9781470435240
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 83160.00 T
Наличие на складе: Нет в наличии.
Описание: Presents a constant rank theorem for the second fundamental form of the space-time level sets of a space-time quasiconcave solution of the heat equation. Utilizing this constant rank theorem, the authors obtain some results of the spatial and space-time level sets of the space-time quasiconcave solution of the heat equation in a convex ring.

Type II Blow Up Manifolds for the Energy Supercritical Semilinear Wave Equation

Автор: Charles Collot
Название: Type II Blow Up Manifolds for the Energy Supercritical Semilinear Wave Equation
ISBN: 147042813X ISBN-13(EAN): 9781470428136
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 77610.00 T
Наличие на складе: Невозможна поставка.
Описание: Provides a visual and narrative history of the architectural evolution and urban development of Southwest Florida as shown in Fort Myers. The city`s famed McGregor Boulevard continues to draw visitors with its eclectic blend of houses and unique histories. Jared Beck and Pamela Miner share stories about the creators and owners of these one-of-a-kind properties, accompanied by striking photographs.

Nonlinear Dirac Equation: Spectral Stability of Solitary Waves

Автор: Nabile Boussaid, Andrew Comech
Название: Nonlinear Dirac Equation: Spectral Stability of Solitary Waves
ISBN: 1470443953 ISBN-13(EAN): 9781470443955
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 107850.00 T
Наличие на складе: Нет в наличии.
Описание: This monograph gives a comprehensive treatment of spectral (linear) stability of weakly relativistic solitary waves in the nonlinear Dirac equation. It turns out that the instability is not an intrinsic property of the Dirac equation that is only resolved in the framework of the second quantization with the Dirac sea hypothesis. Whereas general results about the Dirac-Maxwell and similar equations are not yet available, we can consider the Dirac equation with scalar self-interaction, the model first introduced in 1938. In this book we show that in particular cases solitary waves in this model may be spectrally stable (no linear instability). This result is the first step towards proving asymptotic stability of solitary waves.The book presents the necessary overview of the functional analysis, spectral theory, and the existence and linear stability of solitary waves of the nonlinear Schrodinger equation. It also presents the necessary tools such as the limiting absorption principle and the Carleman estimates in the form applicable to the Dirac operator, and proves the general form of the Dirac-Pauli theorem. All of these results are used to prove the spectral stability of weakly relativistic solitary wave solutions of the nonlinear Dirac equation.

Stability of KAM Tori for Nonlinear Schrodinger Equation

Автор: Hongzi Cong, Jianjun Liu, Xiaoping Yuan
Название: Stability of KAM Tori for Nonlinear Schrodinger Equation
ISBN: 1470416573 ISBN-13(EAN): 9781470416577
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 78540.00 T
Наличие на складе: Невозможна поставка.
Описание: The authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrodinger equation $$\sqrt{-1}\, u_{t}=u_{xx}-M_{\xi}u+\varepsilon|u|^2u,$$ subject to Dirichlet boundary conditions $u(t,0)=u(t,\pi)=0$, where $M_{\xi}$ is a real Fourier multiplier.

Ulam Type Stability

Автор: Janusz Brzd?k; Dorian Popa; Themistocles M. Rassia
Название: Ulam Type Stability
ISBN: 3030289710 ISBN-13(EAN): 9783030289713
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is an outcome of two Conferences on Ulam Type Stability (CUTS) organized in 2016 (July 4-9, Cluj-Napoca, Romania) and in 2018 (October 8-13, 2018, Timisoara, Romania). It presents up-to-date insightful perspective and very resent research results on Ulam type stability of various classes of linear and nonlinear operators; in particular on the stability of many functional equations in a single and several variables (also in the lattice environments, Orlicz spaces, quasi-b-Banach spaces, and 2-Banach spaces) and some orthogonality relations (e.g., of Birkhoff–James). A variety of approaches are presented, but a particular emphasis is given to that of fixed points, with some new fixed point results and their applications provided. Besides these several other topics are considered that are somehow related to the Ulam stability such as: invariant means, geometry of Banach function modules, queueing systems, semi-inner products and parapreseminorms, subdominant eigenvalue location of a bordered diagonal matrix and optimal forward contract design for inventory. New directions and several open problems regarding stability and non-stability concepts are included.Ideal for use as a reference or in a seminar, this book is aimed toward graduate students, scientists and engineers working in functional equations, difference equations, operator theory, functional analysis, approximation theory, optimization theory, and fixed point theory who wish to be introduced to a wide spectrum of relevant theories, methods and applications leading to interdisciplinary research. It advances the possibilities for future research through an extensive bibliography and a large spectrum of techniques, methods and applications.

Stability of Line Solitons for the KP-II Equation in R²

Автор: Tetsu Mizumachi
Название: Stability of Line Solitons for the KP-II Equation in R²
ISBN: 1470414244 ISBN-13(EAN): 9781470414245
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 75770.00 T
Наличие на складе: Невозможна поставка.
Описание: The author proves nonlinear stability of line soliton solutions of the KP-II equation with respect to transverse perturbations that are exponentially localized as y??. He finds that the amplitude of the line soliton converges to that of the line soliton at initial time whereas jumps of the local phase shift of the crest propagate in a finite speed toward y=+/-?.

Critical Parabolic-Type Problems

Автор: Tomasz W. Dlotko, Yejuan Wang
Название: Critical Parabolic-Type Problems
ISBN: 3110597551 ISBN-13(EAN): 9783110597554
Издательство: Walter de Gruyter
Цена: 128870.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Editor-in-ChiefJurgen Appell, Wurzburg, Germany Honorary and Advisory EditorsCatherine Bandle, Basel, SwitzerlandAlain Bensoussan, Richardson, Texas, USAAvner Friedman, Columbus, Ohio, USAUmberto Mosco, Worcester, Massachusetts, USALouis Nirenberg, New York, USAAlfonso Vignoli, Rome, Italy Editorial BoardManuel del Pino, Bath, UK, and Santiago, ChileMikio Kato, Nagano, JapanWojciech Kryszewski, Torun, PolandVicentiu D. Radulescu, Krakow, PolandSimeon Reich, Haifa, Israel Please submit book proposals to Jurgen Appell. Titles in planning include Lucio Damascelli and Filomena Pacella, Morse Index of Solutions of Nonlinear Elliptic Equations (2019)Tomasz W. Dlotko and Yejuan Wang, Critical Parabolic-Type Problems (2019)Rafael Ortega, Periodic Differential Equations in the Plane: A Topological Perspective (2019)Ireneo Peral Alonso and Fernando Soria, Elliptic and Parabolic Equations Involving the Hardy–Leray Potential (2020)Cyril Tintarev, Profile Decompositions and Cocompactness: Functional-Analytic Theory of Concentration Compactness (2020)Takashi Suzuki, Semilinear Elliptic Equations: Classical and Modern Theories (2021)


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия