Ulam Type Stability, Janusz Brzd?k; Dorian Popa; Themistocles M. Rassia
Автор: Matousek Jiri, BjГ¶rner A., Ziegler G.M. Название: Using the Borsuk-Ulam Theorem / Lectures on Topological Methods in Combinatorics and Geometry ISBN: 3540003622 ISBN-13(EAN): 9783540003625 Издательство: Springer Рейтинг: Цена: 55890.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: A number of important results in combinatorics, discrete geometry, and theoretical computer science have been proved using algebraic topology. While the results are quite famous, their proofs are not so widely understood. They are scattered in research papers or outlined in surveys, and they often use topological notions not commonly known among combinatorialists or computer scientists.This book is the first textbook treatment of a significant part of such results. It focuses on so-called equivariant methods, based on the Borsuk-Ulam theorem and its generalizations. The topological tools are intentionally kept on a very elementary level (for example, homology theory and homotopy groups are completely avoided). No prior knowledge of algebraic topology is assumed, only a background in undergraduate mathematics, and the required topological notions and results are gradually explained. This text started with a one-semester graduate course the author taught in fall 1993 in Prague. The transcripts of the lectures by the participants served as a basis of the first version. Some years later, a course partially based on that text was taught by GГјnter M. Ziegler in Berlin. The book is based on a thoroughly rewritten version prepared during a pre-doctoral course the author taught at the ETH Zurich in fall 2001.Most of the material was covered in the course: Chapter 1 was assigned as an introductory reading text, and the other chapters were presented in approximately 30 hours of teaching (by 45 minutes), with some omissions throughout and with only a sketchy presentation of the last chapter.
Автор: Giovanni Gallavotti Название: The Fermi-Pasta-Ulam Problem ISBN: 3642092098 ISBN-13(EAN): 9783642092091 Издательство: Springer Рейтинг: Цена: 104480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This volume reviews the current understanding of the Fermi-Pasta-Ulam (FPU) Problem without trying to force coherence on differing perspectives on the same problem by various groups or approaches.
Автор: Robinson, Clark Название: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos ( Studies in Advanced Mathematics #28 ) ISBN: 0849384958 ISBN-13(EAN): 9780849384950 Издательство: Taylor&Francis Рейтинг: Цена: 193950.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Treats the dynamics of both iteration of functions and solutions of ordinary differential equations. This book introduces various concepts for iteration of functions where the geometry is simpler, but results are interpreted for differential equations. It concentrates on properties of the whole system or subsets of the system.
Автор: Charles Collot, Pierre Raphael, Jeremie Szeftel Название: On the Stability of Type I Blow Up for the Energy Super Critical Heat Equation ISBN: 1470436264 ISBN-13(EAN): 9781470436261 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 83160.00 T Наличие на складе: Нет в наличии. Описание: The authors consider the energy super critical semilinear heat equation $\partial _{t}u=\Delta u u^{p}, x\in \mathbb{R}^3, p>5.$. The authors draws a route map for the derivation of the existence and stability of self-similar blow up in nonradial energy super critical settings.
Автор: Ravi P. Agarwal; Donal O`Regan; Samir H. Saker Название: Oscillation and Stability of Delay Models in Biology ISBN: 3319381393 ISBN-13(EAN): 9783319381398 Издательство: Springer Рейтинг: Цена: 102480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Researchers in the fields of mathematical modeling, mathematical biology, and population dynamics will be particularly interested in this material.
Автор: Hongzi Cong, Jianjun Liu, Xiaoping Yuan Название: Stability of KAM Tori for Nonlinear Schrodinger Equation ISBN: 1470416573 ISBN-13(EAN): 9781470416577 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 78540.00 T Наличие на складе: Невозможна поставка. Описание: The authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrodinger equation $$\sqrt{-1}\, u_{t}=u_{xx}-M_{\xi}u+\varepsilon|u|^2u,$$ subject to Dirichlet boundary conditions $u(t,0)=u(t,\pi)=0$, where $M_{\xi}$ is a real Fourier multiplier.
Автор: M.M. Hapaev Название: Averaging in Stability Theory ISBN: 9401051682 ISBN-13(EAN): 9789401051682 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Kato, Junji Название: Stability of Motion of Nonautonomous Systems (Methods of Limiting Equations) ISBN: 036745596X ISBN-13(EAN): 9780367455965 Издательство: Taylor&Francis Рейтинг: Цена: 63280.00 T Наличие на складе: Невозможна поставка. Описание: This book explores limiting equations constructed in terms of the Bebutov-Miller-Sell concept, the method of comparison, and Lyapunov`s direct method based on scalar, vector and matrix functions. The stability of abstract compacted and uniform dynamic processes, dispersed systems and evolutionary equations in Banach space are also discussed.
Автор: Vladimir Stojanovi?; Predrag Kozi? Название: Vibrations and Stability of Complex Beam Systems ISBN: 3319367315 ISBN-13(EAN): 9783319367316 Издательство: Springer Рейтинг: Цена: 87060.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book reports on solved problems concerning vibrations and stability of complex beam systems.
Автор: Yu.G. Reshetnyak Название: Stability Theorems in Geometry and Analysis ISBN: 0792331184 ISBN-13(EAN): 9780792331186 Издательство: Springer Рейтинг: Цена: 102480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Covers the metric theory of spatial mappings and incorporates results in the theory of quasi-conformal, quasi-isometric and other mappings. The main subject of this text is the study of the stability problem in Liouville`s theorem on conformal mappings in space.
Автор: Bastin Название: Stability and Boundary Stabilization of 1-D Hyperbolic Systems ISBN: 3319320602 ISBN-13(EAN): 9783319320601 Издательство: Springer Рейтинг: Цена: 88500.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices.The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary stabilization of systems of two balance laws by both full-state and dynamic output feedback in observer-controller form is solved by using a “backstepping” method, in which the gains of the feedback laws are solutions of an associated system of linear hyperbolic PDEs. The final chapter presents a case study on the control of navigable rivers to emphasize the main technological features that may occur in real live applications of boundary feedback control.Stability and Boundary Stabilization of 1-D Hyperbolic Systems will be of interest to graduate students and researchers in applied mathematics and control engineering. The wide range of applications it discusses will help it to have as broad an appeal within these groups as possible.
Автор: Leonid Shaikhet Название: Lyapunov Functionals and Stability of Stochastic Functional Differential Equations ISBN: 3319033522 ISBN-13(EAN): 9783319033525 Издательство: Springer Рейтинг: Цена: 113180.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book offers a detailed description of Lyapunov functional construction. It features profuse analytical and numerical examples and demonstrates a method that can be usefully applied in economic, mechanical, biological and ecological systems.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz