Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Zeta and $L$-functions in Number Theory and Combinatorics, Wen-Ching Winnie Li


Варианты приобретения
Цена: 48490.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: 1 шт.  
При оформлении заказа до: 2025-12-22
Ориентировочная дата поставки: Январь
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Wen-Ching Winnie Li
Название:  Zeta and $L$-functions in Number Theory and Combinatorics
ISBN: 9781470449001
Издательство: Mare Nostrum (Eurospan)
Классификация:
ISBN-10: 1470449005
Обложка/Формат: Paperback
Страницы: 95
Вес: 0.78 кг.
Дата издания: 30.03.2019
Серия: Cbms regional conference series in mathematics
Язык: English
Размер: 179 x 254 x 15
Ключевые слова: Number theory
Рейтинг:
Поставляется из: Англии
Описание: Zeta and $L$-functions play a central role in number theory. They provide important information of arithmetic nature. This book, which grew out of the authors teaching over several years, explores the interaction between number theory and combinatorics using zeta and $L$-functions as a central theme. It provides a systematic and comprehensive account of these functions in a combinatorial setting and establishes, among other things, the combinatorial counterparts of celebrated results in number theory, such as the prime number theorem and the Chebotarev density theorem.The spectral theory for finite graphs and higher dimensional complexes is studied. Of special interest in theory and applications are the spectrally extremal objects, called Ramanujan graphs and Ramanujan complexes, which can be characterized by their associated zeta functions satisfying the Riemann Hypothesis. Explicit constructions of these extremal combinatorial objects, using number-theoretic and combinatorial means, are presented.Research on zeta and $L$-functions for complexes other than graphs emerged only in recent years. This is the first book for graduate students and researchers offering deep insight into this fascinating and fast developing area.
Дополнительное описание: Number theory


Various Aspects of Multiple Zeta Functions: In Honor of Professor Kohji Matsumoto`s 60th Birthday

Автор: Hidehiko Mishou, Masatoshi Suzuki, Takashi Nakamura, Yumiko Umegaki
Название: Various Aspects of Multiple Zeta Functions: In Honor of Professor Kohji Matsumoto`s 60th Birthday
ISBN: 4864970882 ISBN-13(EAN): 9784864970884
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 64680.00 T
Наличие на складе: Нет в наличии.
Описание: Presents fifteen research papers on various recent topics about multiple zeta-func tions, which include not only multivariate cases but also single-variable cases, additive and multiplicative number theory, as well as poly-Bernoulli numbers and polynomials.

Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values

Автор: Zhao Jianqiang
Название: Multiple Zeta Functions, Multiple Polylogarithms And Their Special Values
ISBN: 9814689394 ISBN-13(EAN): 9789814689397
Издательство: World Scientific Publishing
Рейтинг:
Цена: 205920.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

This is the first introductory book on multiple zeta functions and multiple polylogarithms which are the generalizations of the Riemann zeta function and the classical polylogarithms, respectively, to the multiple variable setting. It contains all the basic concepts and the important properties of these functions and their special values. This book is aimed at graduate students, mathematicians and physicists who are interested in this current active area of research.

The book will provide a detailed and comprehensive introduction to these objects, their fascinating properties and interesting relations to other mathematical subjects, and various generalizations such as their q-analogs and their finite versions (by taking partial sums modulo suitable prime powers). Historical notes and exercises are provided at the end of each chapter.


From Arithmetic to Zeta-Functions: Number Theory in Memory of Wolfgang Schwarz

Автор: Sander Jьrgen, Steuding Jцrn, Steuding Rasa
Название: From Arithmetic to Zeta-Functions: Number Theory in Memory of Wolfgang Schwarz
ISBN: 3319802968 ISBN-13(EAN): 9783319802961
Издательство: Springer
Рейтинг:
Цена: 111790.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book collects more than thirty contributions in memory of Wolfgang Schwarz, most of which were presented at the seventh International Conference on Elementary and Analytic Number Theory (ELAZ), held July 2014 in Hildesheim, Germany.

Zeta and L-Functions of Varieties and Motives

Автор: Bruno Kahn
Название: Zeta and L-Functions of Varieties and Motives
ISBN: 1108703399 ISBN-13(EAN): 9781108703390
Издательство: Cambridge Academ
Рейтинг:
Цена: 67590.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The amount of mathematics invented for number-theoretic reasons is impressive. It includes much of complex analysis, the re-foundation of algebraic geometry on commutative algebra, group cohomology, homological algebra, and the theory of motives. Zeta and L-functions sit at the meeting point of all these theories and have played a profound role in shaping the evolution of number theory. This book presents a big picture of zeta and L-functions and the complex theories surrounding them, combining standard material with results and perspectives that are not made explicit elsewhere in the literature. Particular attention is paid to the development of the ideas surrounding zeta and L-functions, using quotes from original sources and comments throughout the book, pointing the reader towards the relevant history. Based on an advanced course given at Jussieu in 2013, it is an ideal introduction for graduate students and researchers to this fascinating story.

p-adic Numbers, p-adic Analysis, and Zeta-Functions

Автор: Neal Koblitz
Название: p-adic Numbers, p-adic Analysis, and Zeta-Functions
ISBN: 1461270146 ISBN-13(EAN): 9781461270140
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This work has become the standard introduction to the theory of p-adic numbers. The 2nd edition adds a deeper treatment of p-adic functions, including the Iwasawa logarithm and the p-adic gamma-function, plus new exercises and an appendix of answers and hints.

From Arithmetic to Zeta-Functions

Автор: J?rgen Sander; J?rn Steuding; Rasa Steuding
Название: From Arithmetic to Zeta-Functions
ISBN: 3319282026 ISBN-13(EAN): 9783319282022
Издательство: Springer
Рейтинг:
Цена: 111790.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book collects more than thirty contributions in memory of Wolfgang Schwarz, most of which were presented at the seventh International Conference on Elementary and Analytic Number Theory (ELAZ), held July 2014 in Hildesheim, Germany.

Zeta Functions, Topology and Quantum Physics

Автор: Takashi Aoki; Shigeru Kanemitsu; Mikio Nakahara; Y
Название: Zeta Functions, Topology and Quantum Physics
ISBN: 1441937641 ISBN-13(EAN): 9781441937643
Издательство: Springer
Рейтинг:
Цена: 167700.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume contains papers by invited speakers of the symposium "Zeta Functions, Topology and Quantum Physics" held at Kinki U- versity in Osaka, Japan, during the period of March 3-6, 2003.

p-adic Numbers, p-adic Analysis, and Zeta-Functions

Автор: Neal Koblitz
Название: p-adic Numbers, p-adic Analysis, and Zeta-Functions
ISBN: 0387960171 ISBN-13(EAN): 9780387960173
Издательство: Springer
Рейтинг:
Цена: 60550.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The first edition of this work has become the standard introduction to the theory of p-adic numbers at both the advanced undergraduate and beginning graduate level.

Fractal Zeta Functions and Fractal Drums

Автор: Michel L. Lapidus; Goran Radunovi?; Darko ?ubrini?
Название: Fractal Zeta Functions and Fractal Drums
ISBN: 3319447041 ISBN-13(EAN): 9783319447049
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums.

Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions

Автор: Lapidus Michel L., Radunovic Goran, Zubrinic Darko
Название: Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions
ISBN: 3319831151 ISBN-13(EAN): 9783319831152
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums.

Zeta Functions over Zeros of Zeta Functions

Автор: Andr? Voros
Название: Zeta Functions over Zeros of Zeta Functions
ISBN: 3642052029 ISBN-13(EAN): 9783642052026
Издательство: Springer
Рейтинг:
Цена: 32560.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In the Riemann zeta function ?(s), the non-real zeros or Riemann zeros, denoted ?, play an essential role mainly in number theory, and thereby g- erate considerable interest. However, they are very elusive objects. Thus, no individual zero has an analytically known location; and the Riemann - pothesis, which states that all those zeros should lie on the critical line, i.e., 1 haverealpart, haschallengedmathematicianssince1859(exactly150years 2 ago). For analogous symmetric sets of numbers{v}, such as the roots of a k polynomial, the eigenvalues of a ?nite or in?nite matrix, etc., it is well known that symmetric functions of the{v} tend to have more accessible properties k than the individual elements v . And, we ?nd the largest wealth of explicit k properties to occur in the (generalized) zeta functions of the generic form 's Zeta(s, a)= (v +a) k k (with the extra option of replacing v here by selected functions f(v )). k k Not surprisingly, then, zeta functions over the Riemann zeros have been considered, some as early as 1917.What is surprising is how small the lite- ture on those zeta functions has remained overall.We were able to spot them in barely a dozen research articles over the whole twentieth century and in none ofthebooks featuring the Riemannzeta function. So the domainexists, but it has remained largely con?dential and sporadically covered, in spite of a recent surge of interest. Could it then be that those zeta functions have few or uninteresting pr- erties?Inactualfact, theirstudyyieldsanabundanceofquiteexplicitresults.

Bernoulli Numbers and Zeta Functions

Автор: Tsuneo Arakawa; Tomoyoshi Ibukiyama; Masanobu Kane
Название: Bernoulli Numbers and Zeta Functions
ISBN: 4431563830 ISBN-13(EAN): 9784431563839
Издательство: Springer
Рейтинг:
Цена: 79190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. a formula for Bernoulli numbers by Stirling numbers; congruences between some class numbers and Bernoulli numbers;


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия