Zeta Functions over Zeros of Zeta Functions, Andr? Voros
Автор: Alexander Felshtyn Название: Dynamical Zeta Functions, Nielsen Theory and Reidemeister Torsion ISBN: 0821820907 ISBN-13(EAN): 9780821820902 Издательство: Oxford Academ Рейтинг: Цена: 59670.00 T Наличие на складе: Невозможна поставка. Описание: In the paper we study dynamical zeta functions connected with Nielsen fixed point theory. The study of dynamical zeta functions is part of the theory of dynamical systems, but it is also intimately related to algebraic geometry, number theory, topology and statistical mechanics. The paper consists of four parts. Part I presents a brief account of the Nielsen fixed point theory. Part II deals with dynamical zeta functions connected with Nielsen fixed point theory. Part III is concerned with analogue of Dold congruences for the Reidemeister and Nielsen numbers. In Part IV we explain how dynamical zefunctions give rise to the Reidemeister torsion, a very important topological invariant which has useful applications in knots theory, quantum field theory and dynamical systems.
Автор: Tsuneo Arakawa; Tomoyoshi Ibukiyama; Masanobu Kane Название: Bernoulli Numbers and Zeta Functions ISBN: 4431563830 ISBN-13(EAN): 9784431563839 Издательство: Springer Рейтинг: Цена: 79190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. a formula for Bernoulli numbers by Stirling numbers; congruences between some class numbers and Bernoulli numbers;
Автор: Markus Szymon Fraczek Название: Selberg Zeta Functions and Transfer Operators ISBN: 3319512943 ISBN-13(EAN): 9783319512945 Издательство: Springer Рейтинг: Цена: 60550.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Introduction.-Preliminaries.-The Gamma function and the incomplete Gamma functions.-The Hurwitz Zeta Function and the Lerch Zeta Function.-Computation of the spectra and eigenvectors of large complex matrices.-The hyperbolic Laplace-Beltrami operator.-Transfer operators for the geodesic flow on hyperbolic surfaces.-Numerical results for spectra and traces of the transfer operator for character deformations.-Investigations of Selberg zeta functions under character deformations.-Concluding remarks.-Appendices.-References.-Index of Notations.
Автор: Neal Koblitz Название: p-adic Numbers, p-adic Analysis, and Zeta-Functions ISBN: 1461270146 ISBN-13(EAN): 9781461270140 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This work has become the standard introduction to the theory of p-adic numbers. The 2nd edition adds a deeper treatment of p-adic functions, including the Iwasawa logarithm and the p-adic gamma-function, plus new exercises and an appendix of answers and hints.
Автор: Michel L. Lapidus; Goran Radunovi?; Darko ?ubrini? Название: Fractal Zeta Functions and Fractal Drums ISBN: 3319447041 ISBN-13(EAN): 9783319447049 Издательство: Springer Рейтинг: Цена: 121110.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums.
Автор: Lapidus Michel L., Frankenhuijsen Machiel van Название: Fractal Geometry, Complex Dimensions and Zeta Functions / Geometry and Spectra of Fractal Strings ISBN: 0387332855 ISBN-13(EAN): 9780387332857 Издательство: Springer Рейтинг: Цена: 49330.00 T Наличие на складе: Поставка под заказ. Описание: Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary.Key Features: - The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings- Complex dimensions of a fractal string, defined as the poles of an associated zeta function, are studied in detail, then used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra- Explicit formulas are extended to apply to the geometric, spectral, and dynamic zeta functions associated with a fractal- Examples of such formulas include Prime Orbit Theorem with error term for self-similar flows, and a tube formula- The method of diophantine approximation is used to study self-similar strings and flows- Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functionsThroughout new results are examined. The final chapter gives a new definition of fractality as the presence of nonreal complex dimensions with positive real parts.The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Fractal Geometry, Complex Dimensions and Zeta Functions will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics.
Автор: Peter Kravanja; Marc Van Barel Название: Computing the Zeros of Analytic Functions ISBN: 3540671625 ISBN-13(EAN): 9783540671626 Издательство: Springer Рейтинг: Цена: 27910.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This guide treats four major problems within computational complex analysis in a unified way: computing the zeros and their multiplicities in analytic functions; locating clusters of zeros; computing zeros and poles of meromorphic functions; and solving analytic equations.
Автор: Motohashi Название: Spectral Theory of the Riemann Zeta-Function ISBN: 0521058074 ISBN-13(EAN): 9780521058070 Издательство: Cambridge Academ Рейтинг: Цена: 57030.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Professor Motohashi shows that the Riemann zeta function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the function itself.
Автор: Antanas Laurincikas Название: Limit Theorems for the Riemann Zeta-Function ISBN: 0792338243 ISBN-13(EAN): 9780792338246 Издательство: Springer Рейтинг: Цена: 102480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This volume presents a range of results in analytic and probabilistic number theory. The full spectrum of limit theorems in the sense of weak convergence of probability measures for the modules of the Riemann zeta-function and other functions is given by Dirichlet series.
Автор: J?rgen Sander; J?rn Steuding; Rasa Steuding Название: From Arithmetic to Zeta-Functions ISBN: 3319282026 ISBN-13(EAN): 9783319282022 Издательство: Springer Рейтинг: Цена: 111790.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book collects more than thirty contributions in memory of Wolfgang Schwarz, most of which were presented at the seventh International Conference on Elementary and Analytic Number Theory (ELAZ), held July 2014 in Hildesheim, Germany.
This is the first introductory book on multiple zeta functions and multiple polylogarithms which are the generalizations of the Riemann zeta function and the classical polylogarithms, respectively, to the multiple variable setting. It contains all the basic concepts and the important properties of these functions and their special values. This book is aimed at graduate students, mathematicians and physicists who are interested in this current active area of research.
The book will provide a detailed and comprehensive introduction to these objects, their fascinating properties and interesting relations to other mathematical subjects, and various generalizations such as their q-analogs and their finite versions (by taking partial sums modulo suitable prime powers). Historical notes and exercises are provided at the end of each chapter.
Автор: Arakawa Tsuneo Название: Bernoulli Numbers and Zeta Functions ISBN: 4431549188 ISBN-13(EAN): 9784431549185 Издательство: Springer Рейтинг: Цена: 102480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. a formula for Bernoulli numbers by Stirling numbers; congruences between some class numbers and Bernoulli numbers;
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz