Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles.
Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application.
In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.
Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles.
Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application.
In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.
Автор: Wolfgang Ahnert, Frank Steffen Название: Sound Reinforcement Engineering: Fundamentals and Practice ISBN: 0415238706 ISBN-13(EAN): 9780415238700 Издательство: Taylor&Francis Рейтинг: Цена: 377690.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Sound reinforcement is the increasing of the power of sound signals and reproducing them as acoustic signals. This book introduces the fundamentals of sound reinforcement engineering, and explains its relationship to other disciplines.
Автор: Lutz Frommberger Название: Qualitative Spatial Abstraction in Reinforcement Learning ISBN: 3642266002 ISBN-13(EAN): 9783642266003 Издательство: Springer Рейтинг: Цена: 107130.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Reinforcement learning has evolved to tackle domains that are yet to be fully understood, or are too complex for a closed description. In this book the author investigates whether suitable abstraction methods can overcome the discipline`s deficiencies.
Автор: Todd Hester Название: TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains ISBN: 3319011677 ISBN-13(EAN): 9783319011677 Издательство: Springer Рейтинг: Цена: 130610.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. It presents a novel model-based reinforcement learning algorithm.
Автор: F. Richard Yu; Ying He Название: Deep Reinforcement Learning for Wireless Networks ISBN: 3030105458 ISBN-13(EAN): 9783030105457 Издательство: Springer Рейтинг: Цена: 51230.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme. There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results.. Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.
Автор: Yinyan Zhang; Shuai Li; Xuefeng Zhou Название: Deep Reinforcement Learning with Guaranteed Performance ISBN: 3030333833 ISBN-13(EAN): 9783030333836 Издательство: Springer Рейтинг: Цена: 121110.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book discusses methods and algorithms for the near-optimal adaptive control of nonlinear systems, including the corresponding theoretical analysis and simulative examples, and presents two innovative methods for the redundancy resolution of redundant manipulators with consideration of parameter uncertainty and periodic disturbances.It also reports on a series of systematic investigations on a near-optimal adaptive control method based on the Taylor expansion, neural networks, estimator design approaches, and the idea of sliding mode control, focusing on the tracking control problem of nonlinear systems under different scenarios. The book culminates with a presentation of two new redundancy resolution methods; one addresses adaptive kinematic control of redundant manipulators, and the other centers on the effect of periodic input disturbance on redundancy resolution.Each self-contained chapter is clearly written, making the book accessible to graduate students as well as academic and industrial researchers in the fields of adaptive and optimal control, robotics, and dynamic neural networks.
Автор: Colome Adria, Torras Carme Название: Reinforcement Learning of Bimanual Robot Skills ISBN: 3030263258 ISBN-13(EAN): 9783030263256 Издательство: Springer Рейтинг: Цена: 93160.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book tackles all the stages and mechanisms involved in the learning of manipulation tasks by bimanual robots in unstructured settings, as it can be the task of folding clothes. The first part describes how to build an integrated system, capable of properly handling the kinematics and dynamics of the robot along the learning process.
Автор: Rafail Gabasov; Faima M. Kirillova; Svetlana V. Pr Название: Optimal Feedback Control ISBN: 3540199918 ISBN-13(EAN): 9783540199915 Издательство: Springer Рейтинг: Цена: 95770.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book outlines a new approach to constructing optimal feedback controls for linear control systems that are under the influence of constantly acting bounded perturbations. In cases where only incomplete or imprecise data are available, algorithms for optimal estimators as well as algorithms of optimal identifiers are described.
Автор: Oded Yaniv Название: Quantitative Feedback Design of Linear and Nonlinear Control Systems ISBN: 1441950893 ISBN-13(EAN): 9781441950895 Издательство: Springer Рейтинг: Цена: 174130.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Quantitative Feedback Design of Linear and Nonlinear Control Systems is a self-contained book dealing with the theory and practice of Quantitative Feedback Theory (QFT).
Автор: Todd Hester Название: TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains ISBN: 3319375105 ISBN-13(EAN): 9783319375106 Издательство: Springer Рейтинг: Цена: 104480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. It presents a novel model-based reinforcement learning algorithm.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz