Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Reinforcement Learning for Optimal Feedback Control, Rushikesh Kamalapurkar; Patrick Walters; Joel Rose


Варианты приобретения
Цена: 102480.00T
Кол-во:
 о цене
Наличие: Невозможна поставка.

в Мои желания

Автор: Rushikesh Kamalapurkar; Patrick Walters; Joel Rose
Название:  Reinforcement Learning for Optimal Feedback Control
ISBN: 9783030086893
Издательство: Springer
Классификация:



ISBN-10: 3030086895
Обложка/Формат: Soft cover
Страницы: 293
Вес: 0.65 кг.
Дата издания: 2018
Серия: Communications and Control Engineering
Язык: English
Издание: Softcover reprint of
Иллюстрации: XVI, 293 p.
Размер: 234 x 213 x 15
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Подзаголовок: A Lyapunov-Based Approach
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems.

Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles

Автор: Liu Teng
Название: Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles
ISBN: 1681736209 ISBN-13(EAN): 9781681736204
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 61910.00 T
Наличие на складе: Нет в наличии.
Описание:

Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles.

Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application.

In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.


Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles

Автор: Liu Teng
Название: Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles
ISBN: 1681736187 ISBN-13(EAN): 9781681736181
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 41580.00 T
Наличие на складе: Нет в наличии.
Описание:

Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles.

Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application.

In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.


Sound Reinforcement Engineering: Fundamentals and Practice

Автор: Wolfgang Ahnert, Frank Steffen
Название: Sound Reinforcement Engineering: Fundamentals and Practice
ISBN: 0415238706 ISBN-13(EAN): 9780415238700
Издательство: Taylor&Francis
Рейтинг:
Цена: 377690.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Sound reinforcement is the increasing of the power of sound signals and reproducing them as acoustic signals. This book introduces the fundamentals of sound reinforcement engineering, and explains its relationship to other disciplines.

Qualitative Spatial Abstraction in Reinforcement Learning

Автор: Lutz Frommberger
Название: Qualitative Spatial Abstraction in Reinforcement Learning
ISBN: 3642266002 ISBN-13(EAN): 9783642266003
Издательство: Springer
Рейтинг:
Цена: 107130.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reinforcement learning has evolved to tackle domains that are yet to be fully understood, or are too complex for a closed description. In this book the author investigates whether suitable abstraction methods can overcome the discipline`s deficiencies.

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains

Автор: Todd Hester
Название: TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains
ISBN: 3319011677 ISBN-13(EAN): 9783319011677
Издательство: Springer
Рейтинг:
Цена: 130610.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. It presents a novel model-based reinforcement learning algorithm.

Deep Reinforcement Learning for Wireless Networks

Автор: F. Richard Yu; Ying He
Название: Deep Reinforcement Learning for Wireless Networks
ISBN: 3030105458 ISBN-13(EAN): 9783030105457
Издательство: Springer
Рейтинг:
Цена: 51230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This Springerbrief presents a deep reinforcement learning approach to wireless systems to improve system performance. Particularly, deep reinforcement learning approach is used in cache-enabled opportunistic interference alignment wireless networks and mobile social networks. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme. There is a phenomenal burst of research activities in artificial intelligence, deep reinforcement learning and wireless systems. Deep reinforcement learning has been successfully used to solve many practical problems. For example, Google DeepMind adopts this method on several artificial intelligent projects with big data (e.g., AlphaGo), and gets quite good results.. Graduate students in electrical and computer engineering, as well as computer science will find this brief useful as a study guide. Researchers, engineers, computer scientists, programmers, and policy makers will also find this brief to be a useful tool.

Deep Reinforcement Learning with Guaranteed Performance

Автор: Yinyan Zhang; Shuai Li; Xuefeng Zhou
Название: Deep Reinforcement Learning with Guaranteed Performance
ISBN: 3030333833 ISBN-13(EAN): 9783030333836
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book discusses methods and algorithms for the near-optimal adaptive control of nonlinear systems, including the corresponding theoretical analysis and simulative examples, and presents two innovative methods for the redundancy resolution of redundant manipulators with consideration of parameter uncertainty and periodic disturbances.It also reports on a series of systematic investigations on a near-optimal adaptive control method based on the Taylor expansion, neural networks, estimator design approaches, and the idea of sliding mode control, focusing on the tracking control problem of nonlinear systems under different scenarios. The book culminates with a presentation of two new redundancy resolution methods; one addresses adaptive kinematic control of redundant manipulators, and the other centers on the effect of periodic input disturbance on redundancy resolution.Each self-contained chapter is clearly written, making the book accessible to graduate students as well as academic and industrial researchers in the fields of adaptive and optimal control, robotics, and dynamic neural networks.

Reinforcement Learning of Bimanual Robot Skills

Автор: Colome Adria, Torras Carme
Название: Reinforcement Learning of Bimanual Robot Skills
ISBN: 3030263258 ISBN-13(EAN): 9783030263256
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book tackles all the stages and mechanisms involved in the learning of manipulation tasks by bimanual robots in unstructured settings, as it can be the task of folding clothes. The first part describes how to build an integrated system, capable of properly handling the kinematics and dynamics of the robot along the learning process.

Optimal Feedback Control

Автор: Rafail Gabasov; Faima M. Kirillova; Svetlana V. Pr
Название: Optimal Feedback Control
ISBN: 3540199918 ISBN-13(EAN): 9783540199915
Издательство: Springer
Рейтинг:
Цена: 95770.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book outlines a new approach to constructing optimal feedback controls for linear control systems that are under the influence of constantly acting bounded perturbations. In cases where only incomplete or imprecise data are available, algorithms for optimal estimators as well as algorithms of optimal identifiers are described.

Quantitative Feedback Design of Linear and Nonlinear Control Systems

Автор: Oded Yaniv
Название: Quantitative Feedback Design of Linear and Nonlinear Control Systems
ISBN: 1441950893 ISBN-13(EAN): 9781441950895
Издательство: Springer
Рейтинг:
Цена: 174130.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Quantitative Feedback Design of Linear and Nonlinear Control Systems is a self-contained book dealing with the theory and practice of Quantitative Feedback Theory (QFT).

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains

Автор: Todd Hester
Название: TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains
ISBN: 3319375105 ISBN-13(EAN): 9783319375106
Издательство: Springer
Рейтинг:
Цена: 104480.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. It presents a novel model-based reinforcement learning algorithm.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия