Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Machine Learning for Text, Charu C. Aggarwal


Варианты приобретения
Цена: 46570.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 186 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Charu C. Aggarwal
Название:  Machine Learning for Text
Перевод названия: Чару Аггарвал: Обучение машинному восприятию текстов
ISBN: 9783030088071
Издательство: Springer
Классификация:

ISBN-10: 3030088073
Обложка/Формат: Soft cover
Страницы: 493
Вес: 0.98 кг.
Дата издания: 2019
Язык: English
Издание: Softcover reprint of
Иллюстрации: 7 tables, color; 4 illustrations, color; 76 illustrations, black and white; xxiii, 493 p. 80 illus., 4 illus. in color.
Размер: 254 x 178 x 27
Читательская аудитория: General (us: trade)
Ключевые слова: Data Mining and Knowledge Discovery
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Text analytics is a field that lies on the interface of information retrieval,machine learning, and natural language processing, and this textbook carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this textbook is organized into three categories:- Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for machine learning from text such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis.- Domain-sensitive mining: Chapters 8 and 9 discuss the learning methods from text when combined with different domains such as multimedia and the Web. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. - Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection. This textbook covers machine learning topics for text in detail. Since the coverage is extensive,multiple courses can be offered from the same book, depending on course level. Even though the presentation is text-centric, Chapters 3 to 7 cover machine learning algorithms that are often used indomains beyond text data. Therefore, the book can be used to offer courses not just in text analytics but also from the broader perspective of machine learning (with text as a backdrop). This textbook targets graduate students in computer science, as well as researchers, professors, and industrial practitioners working in these related fields. This textbook is accompanied with a solution manual for classroom teaching.
Дополнительное описание: 1 An Introduction to Text Analytics.- 2 Text Preparation and Similarity Computation.- 3 Matrix Factorization and Topic Modeling.- 4 Text Clustering.- 5 Text Classification: Basic Models.- 6 Linear Models for Classification and Regression.- 7 Classifier Pe


Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 61750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book

Computer Age Statistical Inference

Автор: Bradley Efron and Trevor Hastie
Название: Computer Age Statistical Inference
ISBN: 1107149894 ISBN-13(EAN): 9781107149892
Издательство: Cambridge Academ
Рейтинг:
Цена: 60190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

An Introduction to Machine Learning

Автор: Miroslav Kubat
Название: An Introduction to Machine Learning
ISBN: 3319348868 ISBN-13(EAN): 9783319348865
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications.

Machine Learning for Text

Автор: Aggarwal Charu C.
Название: Machine Learning for Text
ISBN: 3319735306 ISBN-13(EAN): 9783319735306
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 1 An Introduction to Text Analytics.- 2 Text Preparation and Similarity Computation.- 3 Matrix Factorization and Topic Modeling.- 4 Text Clustering.- 5 Text Classification: Basic Models.- 6 Linear Models for Classification and Regression.- 7 Classifier Performance and Evaluation.- 8 Joint Text Mining with Heterogeneous Data.- 9 Information Retrieval and Search Engines.- 10 Text Sequence Modeling and Deep Learning.- 11 Text Summarization.- 12 Information Extraction.- 13 Opinion Mining and Sentiment Analysis.- 14 Text Segmentation and Event Detection.

Automatic Text Simplification

Автор: Horacio Saggion
Название: Automatic Text Simplification
ISBN: 1627058680 ISBN-13(EAN): 9781627058681
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 51750.00 T
Наличие на складе: Невозможна поставка.
Описание: Presents research in text simplification, exploring key issues, including automatic readability assessment, lexical simplification, and syntactic simplification. It provides a detailed account of machine learning techniques currently used in simplification, describes full systems designed for specific languages and target audiences, and offers available resources for research and development.

Automatic Text Simplification

Автор: Horacio Saggion
Название: Automatic Text Simplification
ISBN: 1681732149 ISBN-13(EAN): 9781681732145
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 72070.00 T
Наличие на складе: Невозможна поставка.
Описание: Automatic text simplification, a research topic which started 20 years ago, now has taken on a central role in natural language processing research. This book presents past and current research in text simplification, exploring key issues including automatic readability assessment, lexical simplification, and syntactic simplification.

Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series

Автор: Igor V. Tetko; Ve?ra Ku?rkov?; Pavel Karpov; Fabia
Название: Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series
ISBN: 3030304892 ISBN-13(EAN): 9783030304898
Издательство: Springer
Рейтинг:
Цена: 91300.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The proceedings set LNCS 11727, 11728, 11729, 11730, and 11731 constitute the proceedings of the 28th International Conference on Artificial Neural Networks, ICANN 2019, held in Munich, Germany, in September 2019.

Dynamic Fuzzy Machine Learning

Автор: Li, Fanzhang / Zhang, Li / Zhang, Zhao
Название: Dynamic Fuzzy Machine Learning
ISBN: 3110518708 ISBN-13(EAN): 9783110518702
Издательство: Walter de Gruyter
Рейтинг:
Цена: 149590.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Machine learning is widely used for data analysis. Dynamic fuzzy data are one of the most difficult types of data to analyse in the field of big data, cloud computing, the Internet of Things, and quantum information. At present, the processing of this kind of data is not very mature. The authors carried out more than 20 years of research, and show in this book their most important results. The seven chapters of the book are devoted to key topics such as dynamic fuzzy machine learning models, dynamic fuzzy self-learning subspace algorithms, fuzzy decision tree learning, dynamic concepts based on dynamic fuzzy sets, semi-supervised multi-task learning based on dynamic fuzzy data, dynamic fuzzy hierarchy learning, examination of multi-agent learning model based on dynamic fuzzy logic. This book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, data analysis, mathematics, management, cognitive science, and finance. It can be also used as the basis for teaching the principles of dynamic fuzzy learning.

Toward Deep Neural Networks

Автор: Zhang
Название: Toward Deep Neural Networks
ISBN: 1138387037 ISBN-13(EAN): 9781138387034
Издательство: Taylor&Francis
Рейтинг:
Цена: 127600.00 T
Наличие на складе: Нет в наличии.
Описание: This book introduces deep neural networks, with a focus on the weights-and-structure determination (WASD) algorithm. Based on the authors` 20 years of research experience on neuronets, the book explores the models, algorithms, and applications of the WASD neuronet.

Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control

Автор: Steven L. Brunton, J. Nathan Kutz
Название: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
ISBN: 1108422098 ISBN-13(EAN): 9781108422093
Издательство: Amazon Internet
Рейтинг:
Цена: 0.00 T
Наличие на складе: Невозможна поставка.
Описание: Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. Aimed at advanced undergraduate and beginning graduate students, this textbook provides an integrated viewpoint that shows how to apply emerging methods from data science, data mining, and machine learning to engineering and the physical sciences.

AI and Human Thought and Emotion

Автор: Sam Freed
Название: AI and Human Thought and Emotion
ISBN: 0367029294 ISBN-13(EAN): 9780367029296
Издательство: Taylor&Francis
Рейтинг:
Цена: 107190.00 T
Наличие на складе: Нет в наличии.
Описание: This reference work examines how human thought processes and emotion can be captured by artificial intelligence (AI) algorithms and code. It provides a theoretical framework and demonstrates how code can be generate on the basis of the framework.

Statistics, data mining, and machine learning in astronomy :

Автор: Ivezic?, Z?eljko,
Название: Statistics, data mining, and machine learning in astronomy :
ISBN: 0691198306 ISBN-13(EAN): 9780691198309
Издательство: Wiley
Рейтинг:
Цена: 82370.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.

An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.

  • Fully revised and expanded
  • Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets
  • Features real-world data sets from astronomical surveys
  • Uses a freely available Python codebase throughout
  • Ideal for graduate students, advanced undergraduates, and working astronomers



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия