Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Dynamic Fuzzy Machine Learning, Li, Fanzhang / Zhang, Li / Zhang, Zhao


Варианты приобретения
Цена: 149590.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 166 шт.  
При оформлении заказа до:
Ориентировочная дата поставки:
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Li, Fanzhang / Zhang, Li / Zhang, Zhao
Название:  Dynamic Fuzzy Machine Learning
Перевод названия: Фанжанг Ли: Динамическое нечеткое машинное обучение
ISBN: 9783110518702
Издательство: Walter de Gruyter
Классификация:




ISBN-10: 3110518708
Обложка/Формат: Hardback
Страницы: 337
Вес: 0.84 кг.
Дата издания: 04.12.2017
Серия: Engineering
Язык: English
Размер: 244 x 175 x 23
Читательская аудитория: Professional and scholarly
Ключевые слова: Algorithms & data structures,Mathematical theory of computation,Artificial intelligence, COMPUTERS / Intelligence (AI) & Semantics,COMPUTERS / Programming / Algorithms,TECHNOLOGY & ENGINEERING / Automation,TECHNOLOGY & ENGINEERING / Engineering (General)
Рейтинг:
Поставляется из: Германии
Описание: Machine learning is widely used for data analysis. Dynamic fuzzy data are one of the most difficult types of data to analyse in the field of big data, cloud computing, the Internet of Things, and quantum information. At present, the processing of this kind of data is not very mature. The authors carried out more than 20 years of research, and show in this book their most important results. The seven chapters of the book are devoted to key topics such as dynamic fuzzy machine learning models, dynamic fuzzy self-learning subspace algorithms, fuzzy decision tree learning, dynamic concepts based on dynamic fuzzy sets, semi-supervised multi-task learning based on dynamic fuzzy data, dynamic fuzzy hierarchy learning, examination of multi-agent learning model based on dynamic fuzzy logic. This book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, data analysis, mathematics, management, cognitive science, and finance. It can be also used as the basis for teaching the principles of dynamic fuzzy learning.

Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 0387310738 ISBN-13(EAN): 9780387310732
Издательство: Springer
Рейтинг:
Цена: 79190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 124150.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.


Dynamic asset pricing theory

Автор: Duffie, Darrell
Название: Dynamic asset pricing theory
ISBN: 069109022X ISBN-13(EAN): 9780691090221
Издательство: Wiley
Рейтинг:
Цена: 73920.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Suitable for doctoral students and researchers, this book talks about the theory of asset pricing and portfolio selection in multiperiod settings under uncertainty. The asset pricing results are based on the three restrictive assumptions: absence of arbitrage, single-agent optimality, and equilibrium.

Practical Machine Learning with H2O

Автор: Darren Cook
Название: Practical Machine Learning with H2O
ISBN: 149196460X ISBN-13(EAN): 9781491964606
Издательство: Wiley
Рейтинг:
Цена: 42230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms.

Principles and Theory for Data Mining and Machine Learning

Автор: Clarke
Название: Principles and Theory for Data Mining and Machine Learning
ISBN: 0387981349 ISBN-13(EAN): 9780387981345
Издательство: Springer
Рейтинг:
Цена: 186330.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Extensive treatment of the most up-to-date topicsProvides the theory and concepts behind popular and emerging methodsRange of topics drawn from Statistics, Computer Science, and Electrical Engineering

Fundamentals of machining and machine tools

Автор: Boothroyd, G.
Название: Fundamentals of machining and machine tools
ISBN: 1574446592 ISBN-13(EAN): 9781574446593
Издательство: Taylor&Francis
Рейтинг:
Цена: 148010.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reflecting changes in machining practice, Fundamentals of Machining and Machine Tools, Third Edition emphasizes the economics of machining processes and design for machining. This edition includes new material on super-hard cutting tool materials, tool geometries, and surface coatings. It describes recent developments in high-speed machining, hard machining, and cutting fluid applications such as dry and minimum-quantity lubrication machining. It presents analytical methods that outline the limitations of various appaches. This edition also features expanded information on tool geometries for chip breaking and control as well as improvements in cost modeling of machining processes.

Statistical and Machine-Learning Data Mining

Автор: Ratner Bruce
Название: Statistical and Machine-Learning Data Mining
ISBN: 1439860912 ISBN-13(EAN): 9781439860915
Издательство: Taylor&Francis
Рейтинг:
Цена: 60220.00 T
Наличие на складе: Нет в наличии.
Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 61750.00 T
Наличие на складе: Нет в наличии.
Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book

Machine Learning for Hackers

Автор: Conway Drew, White John Myles
Название: Machine Learning for Hackers
ISBN: 1449303714 ISBN-13(EAN): 9781449303716
Издательство: Wiley
Рейтинг:
Цена: 42230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Now that storage and collection technologies are cheaper and more precise, methods for extracting relevant information from large datasets is within the reach any experienced programmer willing to crunch data.

Empirical dynamic asset pricing

Автор: Singleton, Kenneth J.
Название: Empirical dynamic asset pricing
ISBN: 0691122970 ISBN-13(EAN): 9780691122977
Издательство: Wiley
Рейтинг:
Цена: 115110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Focuses on the interplay between model specification, data collection, and econometric testing of dynamic asset pricing models. This book includes the econometric methods used in analyzing financial time-series models, and the goodness-of-fit of preference-based and no-arbitrage models of equity returns and the term structure of interest rates.

Frontiers in Data Science

Название: Frontiers in Data Science
ISBN: 1498799329 ISBN-13(EAN): 9781498799324
Издательство: Taylor&Francis
Рейтинг:
Цена: 127600.00 T
Наличие на складе: Невозможна поставка.
Описание: Frontiers in Data Science deals with philosophical and practical results in Data Science. A broad definition of Data Science describes the process of analyzing data to transform data into insights. This also involves asking philosophical, legal and social questions in the context of data generation and analysis.

Machine Learning: The New AI

Автор: Alpaydin Ethem
Название: Machine Learning: The New AI
ISBN: 0262529513 ISBN-13(EAN): 9780262529518
Издательство: MIT Press
Рейтинг:
Цена: 18000.00 T
Наличие на складе: Нет в наличии.
Описание:

A concise overview of machine learning -- computer programs that learn from data -- which underlies applications that include recommendation systems, face recognition, and driverless cars.

Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition -- as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as "Big Data" has gotten bigger, the theory of machine learning -- the foundation of efforts to process that data into knowledge -- has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications.

Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of "data science," and discusses the ethical and legal implications for data privacy and security.



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия