Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 69870.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: Malley Название: Statistical Learning for Biomedical Data ISBN: 0521699096 ISBN-13(EAN): 9780521699099 Издательство: Cambridge Academ Рейтинг: Цена: 43290.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Biomedical researchers need machine learning techniques to make predictions such as survival/death or response to treatment when data sets are large and complex. This highly motivating introduction to these machines explains underlying principles in nontechnical language, using many examples and figures, and connects these new methods to familiar techniques.
Автор: Rue Название: Gaussian Markov Random Fields ISBN: 1584884320 ISBN-13(EAN): 9781584884323 Издательство: Taylor&Francis Рейтинг: Цена: 163330.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Gaussian Markov Random Field (GMRF) models, most widely used in spatial statistics are presented in this, the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects.
Автор: Cheng Russell C H Название: Non-Standard Parametric Statistical Inference ISBN: 0198505043 ISBN-13(EAN): 9780198505044 Издательство: Oxford Academ Рейтинг: Цена: 129360.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This research monograph gives a unified view of non-standard estimation problems. It provides an overall mathematical framework, but also draws together and studies in detail a large number of practical problems, previously only treated separately, offering solution methods and numerical procedures for each.
Автор: Hastie Название: Statistical Learning with Sparsity ISBN: 1498712169 ISBN-13(EAN): 9781498712163 Издательство: Taylor&Francis Рейтинг: Цена: 112290.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Discover New Methods for Dealing with High-Dimensional Data
A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data.
Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of ℓ1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso.
In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.
Автор: Bradley Efron and Trevor Hastie Название: Computer Age Statistical Inference ISBN: 1107149894 ISBN-13(EAN): 9781107149892 Издательство: Cambridge Academ Рейтинг: Цена: 60190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Автор: Speed Название: Statistical Analysis of Gene Expression Microarray Data ISBN: 1584883278 ISBN-13(EAN): 9781584883272 Издательство: Taylor&Francis Рейтинг: Цена: 112290.00 T Наличие на складе: Невозможна поставка. Описание: Written by pre-eminent world authorities in the field, this is a reference for the statistical analysis of genetic microarray data. Starting from the first steps of genetic microarray data analysis, this book covers the important topics and common methodologies for analyzing gene expression data.
Автор: L D Landau Название: Statistical Physics, ISBN: 0750633727 ISBN-13(EAN): 9780750633727 Издательство: Elsevier Science Рейтинг: Цена: 78590.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: A lucid presentation of statistical physics and thermodynamics which develops from the general principles to give a large number of applications of the theory.
Finance and insurance companies are facing a wide range of parametric statistical problems. Statistical experiments generated by a sample of independent and identically distributed random variables are frequent and well understood, especially those consisting of probability measures of an exponential type. However, the aforementioned applications also offer non-classical experiments implying observation samples of independent but not identically distributed random variables or even dependent random variables.
Three examples of such experiments are treated in this book. First, the Generalized Linear Models are studied. They extend the standard regression model to non-Gaussian distributions. Statistical experiments with Markov chains are considered next. Finally, various statistical experiments generated by fractional Gaussian noise are also described.
In this book, asymptotic properties of several sequences of estimators are detailed. The notion of asymptotical efficiency is discussed for the different statistical experiments considered in order to give the proper sense of estimation risk. Eighty examples and computations with R software are given throughout the text.
Examines a range of statistical inference methods in the context of finance and insurance applications
Presents the LAN (local asymptotic normality) property of likelihoods
Combines the proofs of LAN property for different statistical experiments that appears in financial and insurance mathematics
Provides the proper description of such statistical experiments and invites readers to seek optimal estimators (performed in R) for such statistical experiments
Автор: Teraoka Название: Statistical Thermodynamics: Basics and Application s to Chemical Systems ISBN: 1118305116 ISBN-13(EAN): 9781118305119 Издательство: Wiley Рейтинг: Цена: 86540.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Written to introduce readers to molecular descriptions of thermodynamics, chemical systems, and biomolecules, Statistical Thermodynamics discusses the aspects of statistical thermodynamics of most use and interest to chemistry students.
Автор: Morten Fagerland Название: Statistical Analysis of Contingency Tables ISBN: 1466588179 ISBN-13(EAN): 9781466588172 Издательство: Taylor&Francis Рейтинг: Цена: 107190.00 T Наличие на складе: Нет в наличии. Описание: This book is an invaluable tool for statistical inference in contingency tables. It covers effect size estimation, confidence intervals, and hypothesis tests for the binomial and the multinomial distributions, unpaired and paired 2x2 tables, rxc tables, ordered rx2 and 2xc tables, paired cxc tables, and stratified tables.
Автор: James Gareth Название: An Introduction to Statistical Learning ISBN: 1461471370 ISBN-13(EAN): 9781461471370 Издательство: Springer Рейтинг: Цена: 60550.00 T Наличие на складе: Невозможна поставка. Описание: This book presents key modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, and clustering.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz