Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Visual Knowledge Discovery and Machine Learning, Kovalerchuk


Варианты приобретения
Цена: 158380.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 182 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Kovalerchuk
Название:  Visual Knowledge Discovery and Machine Learning
ISBN: 9783319730394
Издательство: Springer
Классификация:



ISBN-10: 3319730398
Обложка/Формат: Hardcover
Страницы: 317
Вес: 0.82 кг.
Дата издания: 2018
Серия: Intelligent Systems Reference Library
Язык: English
Издание: 1st ed. 2018
Иллюстрации: 100 tables, color; 263 illustrations, color; 11 illustrations, black and white; xvi, 293 p. 274 illus., 263 illus. in color.
Размер: 234 x 156 x 21
Читательская аудитория: General (us: trade)
Основная тема: Computational Intelligence
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book combines the advantages of high-dimensional data visualization and machine learning in the context of identifying complex n-D data patterns. It vastly expands the class of reversible lossless 2-D and 3-D visualization methods, which preserve the n-D information. This class of visual representations, called the General Lines Coordinates (GLCs), is accompanied by a set of algorithms for n-D data classification, clustering, dimension reduction, and Pareto optimization. The mathematical and theoretical analyses and methodology of GLC are included, and the usefulness of this new approach is demonstrated in multiple case studies. These include the Challenger disaster, world hunger data, health monitoring, image processing, text classification, market forecasts for a currency exchange rate, computer-aided medical diagnostics, and others. As such, the book offers a unique resource for students, researchers, and practitioners in the emerging field of Data Science.
Дополнительное описание: Motivation, Problems and Approach.- General Line Coordinates (GLC).- Theoretical and Mathematical Basis of GLC.- Adjustable GLCs for decreasing occlusion and pattern simplification.- GLC Case Studies.- Discovering visual features and shape perception capa


The Elements of Statistical Learning

Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman
Название: The Elements of Statistical Learning
ISBN: 0387848576 ISBN-13(EAN): 9780387848570
Издательство: Springer
Рейтинг:
Цена: 69870.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.

Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 124150.00 T
Наличие на складе: Невозможна поставка.
Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.


Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 90290.00 T
Наличие на складе: Нет в наличии.
Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.


Machine Learning and Knowledge Discovery in Databases

Автор: Albert Bifet; Michael May; Bianca Zadrozny; Ricard
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3319234609 ISBN-13(EAN): 9783319234601
Издательство: Springer
Рейтинг:
Цена: 52170.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. These include 89 research papers, 11 industrial papers, 14 nectar papers, 17 demo papers.

Machine Learning and Knowledge Discovery in Databases

Автор: Annalisa Appice; Pedro Pereira Rodrigues; V?tor Sa
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3319235249 ISBN-13(EAN): 9783319235240
Издательство: Springer
Рейтинг:
Цена: 81990.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. These include 89 research papers, 11 industrial papers, 14 nectar papers, 17 demo papers.

Machine Learning and Knowledge Discovery in Databases

Автор: Frasconi
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3319462261 ISBN-13(EAN): 9783319462264
Издательство: Springer
Рейтинг:
Цена: 91310.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016.

Machine Learning and Knowledge Discovery in Databases

Автор: Frasconi
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3319461273 ISBN-13(EAN): 9783319461274
Издательство: Springer
Рейтинг:
Цена: 91310.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016.

Machine Learning and Knowledge Discovery in Databases

Автор: Annalisa Appice; Pedro Pereira Rodrigues; V?tor Sa
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3319235273 ISBN-13(EAN): 9783319235271
Издательство: Springer
Рейтинг:
Цена: 81990.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. These include 89 research papers, 11 industrial papers, 14 nectar papers, and 17 demo papers.

Machine Learning and Knowledge Discovery in Databases

Автор: Berendt
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3319461303 ISBN-13(EAN): 9783319461304
Издательство: Springer
Рейтинг:
Цена: 54040.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016.

Machine Learning and Knowledge Discovery in Databases

Автор: Altun
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3319712721 ISBN-13(EAN): 9783319712727
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three volume proceedings LNAI 10534 - 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. unsupervised and semisupervised learning. Part III: applied data science track;

Machine Learning and Knowledge Discovery in Databases

Автор: Ceci
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3319712454 ISBN-13(EAN): 9783319712451
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three volume proceedings LNAI 10534 - 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017.

Machine Learning and Knowledge Discovery in Databases

Автор: Ceci
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3319712489 ISBN-13(EAN): 9783319712482
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The three volume proceedings LNAI 10534 - 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия