Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Machine Learning, Tony Jebara


Варианты приобретения
Цена: 93160.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 194 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Tony Jebara
Название:  Machine Learning
ISBN: 9781461347569
Издательство: Springer
Классификация:



ISBN-10: 1461347564
Обложка/Формат: Paperback
Страницы: 200
Вес: 0.32 кг.
Дата издания: 27.09.2012
Серия: The Springer International Series in Engineering and Computer Science
Язык: English
Размер: 234 x 156 x 12
Основная тема: Computer Science
Подзаголовок: Discriminative and Generative
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Machine Learning: Discriminative and Generative covers the main contemporary themes and tools in machine learning ranging from Bayesian probabilistic models to discriminative support-vector machines.

Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 1493938436 ISBN-13(EAN): 9781493938438
Издательство: Springer
Рейтинг:
Цена: 69870.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 0387310738 ISBN-13(EAN): 9780387310732
Издательство: Springer
Рейтинг:
Цена: 79190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Mathematics for Machine Learning

Автор: Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
Название: Mathematics for Machine Learning
ISBN: 110845514X ISBN-13(EAN): 9781108455145
Издательство: Cambridge Academ
Рейтинг:
Цена: 42230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics.

Computational Intelligence for Machine Learning and Healthcare Informatics

Автор: Rajshree Srivastava, Pradeep Kumar Mallick, Siddha
Название: Computational Intelligence for Machine Learning and Healthcare Informatics
ISBN: 3110647826 ISBN-13(EAN): 9783110647822
Издательство: Walter de Gruyter
Цена: 136310.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: THE SERIES: INTELLIGENT BIOMEDICAL DATA ANALYSIS
By focusing on the methods and tools for intelligent data analysis, this series aims to narrow the increasing gap between data gathering and data comprehension. Emphasis is also given to the problems resulting from automated data collection in modern hospitals, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring. In medicine, overcoming this gap is crucial since medical decision making needs to be supported by arguments based on existing medical knowledge as well as information, regularities and trends extracted from big data sets.

Practical Smoothing: The Joys of P-splines

Автор: Paul H.C. Eilers, Brian D. Marx
Название: Practical Smoothing: The Joys of P-splines
ISBN: 1108482953 ISBN-13(EAN): 9781108482950
Издательство: Cambridge Academ
Рейтинг:
Цена: 57030.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: P-splines are widely used in statistics and machine learning for smoothing out noise in data and to avoid overtraining. This practical guide covers theory and a range of standard and non-standard applications with code in R for professionals and researchers looking for a simple, flexible and powerful smoothing tool.

Industrial Applications of Machine Learning

Автор: Pedro Larran?aga; Alberto Ogbechie
Название: Industrial Applications of Machine Learning
ISBN: 0367656876 ISBN-13(EAN): 9780367656874
Издательство: Taylor&Francis
Рейтинг:
Цена: 47970.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book shows how machine learning can be applied to address real-world problems in the fourth industrial revolution and provides the required knowledge and tools to empower readers to build their own solutions based on theory and practice. The book introduces the fourth industrial revolution and its current impact on organizations and society

Human-Machine Shared Contexts

Автор: Lawless, William
Название: Human-Machine Shared Contexts
ISBN: 0128205431 ISBN-13(EAN): 9780128205433
Издательство: Elsevier Science
Рейтинг:
Цена: 132500.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Human-Machine Shared Contexts considers the foundations, metrics, and applications of human-machine systems. Editors and authors debate whether machines, humans, and systems should speak only to each other, only to humans, or to both and how. The book establishes the meaning and operation of "shared contexts" between humans and machines; it also explores how human-machine systems affect targeted audiences (researchers, machines, robots, users) and society, as well as future ecosystems composed of humans and machines.

This book explores how user interventions may improve the context for autonomous machines operating in unfamiliar environments or when experiencing unanticipated events; how autonomous machines can be taught to explain contexts by reasoning, inferences, or causality, and decisions to humans relying on intuition; and for mutual context, how these machines may interdependently affect human awareness, teams and society, and how these machines may be affected in turn. In short, can context be mutually constructed and shared between machines and humans? The editors are interested in whether shared context follows when machines begin to think, or, like humans, develop subjective states that allow them to monitor and report on their interpretations of reality, forcing scientists to rethink the general model of human social behavior. If dependence on machine learning continues or grows, the public will also be interested in what happens to context shared by users, teams of humans and machines, or society when these machines malfunction. As scientists and engineers think through this change in human terms, the ultimate goal is for AI to advance the performance of autonomous machines and teams of humans and machines for the betterment of society wherever these machines interact with humans or other machines.

This book will be essential reading for professional, industrial, and military computer scientists and engineers; machine learning (ML) and artificial intelligence (AI) scientists and engineers, especially those engaged in research on autonomy, computational context, and human-machine shared contexts; advanced robotics scientists and engineers; scientists working with or interested in data issues for autonomous systems such as with the use of scarce data for training and operations with and without user interventions; social psychologists, scientists and physical research scientists pursuing models of shared context; modelers of the internet of things (IOT); systems of systems scientists and engineers and economists; scientists and engineers working with agent-based models (ABMs); policy specialists concerned with the impact of AI and ML on society and civilization; network scientists and engineers; applied mathematicians (e.g., holon theory, information theory); computational linguists; and blockchain scientists and engineers.


On the Path to AI: Law`s Prophecies and the Conceptual Foundations of the Machine Learning Age

Автор: Grant Thomas D., Wischik Damon J.
Название: On the Path to AI: Law`s Prophecies and the Conceptual Foundations of the Machine Learning Age
ISBN: 3030435814 ISBN-13(EAN): 9783030435813
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This open access book explores machine learning and its impact on how we make sense of the world. It does so by bringing together two 'revolutions' in a surprising analogy: the revolution of machine learning, which has placed computing on the path to artificial intelligence, and the revolution in thinking about the law that was spurred by Oliver Wendell Holmes Jr in the last two decades of the 19th century. Holmes reconceived law as prophecy based on experience, prefiguring the buzzwords of the machine learning age-prediction based on datasets.

On the path to AI introduces readers to the key concepts of machine learning, discusses the potential applications and limitations of predictions generated by machines using data, and informs current debates amongst scholars, lawyers and policy makers on how it should be used and regulated wisely. Technologists will also find useful lessons learned from the last 120 years of legal grappling with accountability, explainability, and biased data.


Introduction to machine learning with applications in information security

Автор: Stamp, Mark
Название: Introduction to machine learning with applications in information security
ISBN: 0367573059 ISBN-13(EAN): 9780367573058
Издательство: Taylor&Francis
Рейтинг:
Цена: 42870.00 T
Наличие на складе: Нет в наличии.
Описание: This class-tested textbook will provide in-depth coverage of the fundamentals of machine learning, with an exploration of applications in information security. The book will cover malware detection, cryptography, and intrusion detection. The book will be relevant for students in machine learning and computer security courses.

Deep learning on graphs

Автор: Ma, Yao (michigan State University) Tang, Jiliang (michigan State University)
Название: Deep learning on graphs
ISBN: 1108831745 ISBN-13(EAN): 9781108831741
Издательство: Cambridge Academ
Рейтинг:
Цена: 47510.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This comprehensive text on the theory and techniques of graph neural networks takes students, practitioners, and researchers from the basics to the state of the art. It systematically introduces foundational topics such as filtering pooling, robustness, and scalability and then demonstrates applications in NLP, data mining, vision and healthcare.

Machine learning in finance

Автор: Dixon, Matthew F. Halperin, Igor Bilokon, Paul
Название: Machine learning in finance
ISBN: 3030410676 ISBN-13(EAN): 9783030410674
Издательство: Springer
Рейтинг:
Цена: 74530.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry.

This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective.

The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management.

Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.


Principles of Quantum Artificial Intelligence (Second Edition): Quantum Problem Solving and Machine Learning

Автор: Wichert Andreas Miroslaus
Название: Principles of Quantum Artificial Intelligence (Second Edition): Quantum Problem Solving and Machine Learning
ISBN: 9811224307 ISBN-13(EAN): 9789811224300
Издательство: World Scientific Publishing
Рейтинг:
Цена: 163680.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

This unique compendium presents an introduction to problem solving, information theory, statistical machine learning, stochastic methods and quantum computation. It indicates how to apply quantum computation to problem solving, machine learning and quantum-like models to decision making -- the core disciplines of artificial intelligence.

Most of the chapters were rewritten and extensive new materials were updated. New topics include quantum machine learning, quantum-like Bayesian networks and mind in Everett many-worlds



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия