Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

The Nature of Statistical Learning Theory, Vladimir Vapnik


Варианты приобретения
Цена: 139750.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 197 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Vladimir Vapnik
Название:  The Nature of Statistical Learning Theory
ISBN: 9781441931603
Издательство: Springer
Классификация:

ISBN-10: 1441931600
Обложка/Формат: Paperback
Страницы: 314
Вес: 0.47 кг.
Дата издания: 01.12.2010
Серия: Information Science and Statistics
Язык: English
Издание: Softcover reprint of
Иллюстрации: Xx, 314 p.
Размер: 234 x 156 x 18
Читательская аудитория: Professional & vocational
Основная тема: Statistics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics.

The Elements of Statistical Learning

Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman
Название: The Elements of Statistical Learning
ISBN: 0387848576 ISBN-13(EAN): 9780387848570
Издательство: Springer
Рейтинг:
Цена: 69870.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.

Statistical Learning for Biomedical Data

Автор: Malley
Название: Statistical Learning for Biomedical Data
ISBN: 0521699096 ISBN-13(EAN): 9780521699099
Издательство: Cambridge Academ
Рейтинг:
Цена: 43290.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Biomedical researchers need machine learning techniques to make predictions such as survival/death or response to treatment when data sets are large and complex. This highly motivating introduction to these machines explains underlying principles in nontechnical language, using many examples and figures, and connects these new methods to familiar techniques.

An Introduction to Multivariate Statistical Analysis, Third Edition

Автор: T. W. Anderson
Название: An Introduction to Multivariate Statistical Analysis, Third Edition
ISBN: 0471360910 ISBN-13(EAN): 9780471360919
Издательство: Wiley
Рейтинг:
Цена: 184750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Uses the method of maximum likelihood to a large extent to ensure reasonable, and in some cases optimal procedures. This work treats the basic and important topics in multivariate statistics.

Data Analysis Using Stata, Third Edition

Автор: Kohler
Название: Data Analysis Using Stata, Third Edition
ISBN: 1597181102 ISBN-13(EAN): 9781597181105
Издательство: Taylor&Francis
Рейтинг:
Цена: 74510.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Data Analysis Using Stata, Third Edition is a comprehensive introduction to both statistical methods and Stata. Beginners will learn the logic of data analysis and interpretation and easily become self-sufficient data analysts. Readers already familiar with Stata will find it an enjoyable resource for picking up new tips and tricks.

The book is written as a self-study tutorial and organized around examples. It interactively introduces statistical techniques such as data exploration, description, and regression techniques for continuous and binary dependent variables. Step by step, readers move through the entire process of data analysis and in doing so learn the principles of Stata, data manipulation, graphical representation, and programs to automate repetitive tasks. This third edition includes advanced topics, such as factor-variables notation, average marginal effects, standard errors in complex survey, and multiple imputation in a way, that beginners of both data analysis and Stata can understand.

Using data from a longitudinal study of private households, the authors provide examples from the social sciences that are relatable to researchers from all disciplines. The examples emphasize good statistical practice and reproducible research. Readers are encouraged to download the companion package of datasets to replicate the examples as they work through the book. Each chapter ends with exercises to consolidate acquired skills.


Introduction to Time Series Using Stata

Автор: Becketti
Название: Introduction to Time Series Using Stata
ISBN: 1597181323 ISBN-13(EAN): 9781597181327
Издательство: Taylor&Francis
Рейтинг:
Цена: 75530.00 T
Наличие на складе: Невозможна поставка.
Описание: Recent decades have witnessed explosive growth in new and powerful tools for timeseries analysis. These innovations have overturned older approaches to forecasting, macroeconomic policy analysis, the study of productivity and long-run economic growth, and the trading of financial assets. Familiarity with these new tools on time series is an essential skill for statisticians, econometricians, and applied researchers. Introduction to Time Series Using Stata provides a step-by-step guide to essential timeseries techniques—from the incredibly simple to the quite complex—and, at the same time, demonstrates how these techniques can be applied in the Stata statistical package. The emphasis is on an understanding of the intuition underlying theoretical innovations and an ability to apply them. Real-world examples illustrate the application of each concept as it is introduced, and care is taken to highlight the pitfalls, as well as the power, of each new tool. Sean Becketti is a financial industry veteran with three decades of experience in academics, government, and private industry. Over the last two decades, Becketti has led proprietary research teams at several leading financial firms, responsible for the models underlying the valuation, hedging, and relative value analysis of some of the largest fixed-income portfolios in the world.

Statistical Learning with Sparsity

Автор: Hastie
Название: Statistical Learning with Sparsity
ISBN: 1498712169 ISBN-13(EAN): 9781498712163
Издательство: Taylor&Francis
Рейтинг:
Цена: 112290.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Discover New Methods for Dealing with High-Dimensional Data

A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data.

Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of 1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso.

In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.


Statistical and Machine-Learning Data Mining

Автор: Ratner Bruce
Название: Statistical and Machine-Learning Data Mining
ISBN: 1439860912 ISBN-13(EAN): 9781439860915
Издательство: Taylor&Francis
Рейтинг:
Цена: 60220.00 T
Наличие на складе: Нет в наличии.
Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.

An Introduction to Statistical Learning

Автор: James Gareth
Название: An Introduction to Statistical Learning
ISBN: 1461471370 ISBN-13(EAN): 9781461471370
Издательство: Springer
Рейтинг:
Цена: 60550.00 T
Наличие на складе: Невозможна поставка.
Описание: This book presents key modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, and clustering.

Information Theory and Statistical Learning

Автор: Frank Emmert-Streib; Matthias Dehmer
Название: Information Theory and Statistical Learning
ISBN: 0387848150 ISBN-13(EAN): 9780387848150
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.

Introduction to statistical relational learning

Название: Introduction to statistical relational learning
ISBN: 0262072882 ISBN-13(EAN): 9780262072885
Издательство: MIT Press
Рейтинг:
Цена: 71280.00 T
Наличие на складе: Нет в наличии.
Описание: Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications.

Machine Learning

Автор: Marsland
Название: Machine Learning
ISBN: 1466583282 ISBN-13(EAN): 9781466583283
Издательство: Taylor&Francis
Рейтинг:
Цена: 80630.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

A Proven, Hands-On Approach for Students without a Strong Statistical Foundation

Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.

Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.

New to the Second Edition

  • Two new chapters on deep belief networks and Gaussian processes
  • Reorganization of the chapters to make a more natural flow of content
  • Revision of the support vector machine material, including a simple implementation for experiments
  • New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron
  • Additional discussions of the Kalman and particle filters
  • Improved code, including better use of naming conventions in Python

Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author's website.


Applied Linear Statistical Models with Student CD

Автор: Nachtsheim;Neter;Kutner
Название: Applied Linear Statistical Models with Student CD
ISBN: 0071122214 ISBN-13(EAN): 9780071122214
Издательство: McGraw-Hill
Рейтинг:
Цена: 61770.00 T
Наличие на складе: Поставка под заказ.
Описание: "Applied Linear Statistical Models", 5e, is the long established leading authoritative text and reference on statistical modeling. For students in most any discipline where statistical analysis or interpretation is used, ALSM serves as the standard work. The text includes brief introductory and review material, and then proceeds through regression and modeling for the first half, and through ANOVA and Experimental Design in the second half. All topics are presented in a precise and clear style supported with solved examples, numbered formulae, graphic illustrations, and "Notes" to provide depth and statistical accuracy and precision. Applications used within the text and the hallmark problems, exercises, and projects are drawn from virtually all disciplines and fields providing motivation for students in virtually any college. The Fifth edition provides an increased use of computing and graphical analysis throughout, without sacrificing concepts or rigor. In general, the 5e uses larger data sets in examples and exercises, and where methods can be automated within software without loss of understanding, it is so done.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия