Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Computational Learning Theory, Paul Vitanyi


Варианты приобретения
Цена: 81050.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 131 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Paul Vitanyi
Название:  Computational Learning Theory
ISBN: 9783540591191
Издательство: Springer
Классификация:
ISBN-10: 3540591192
Обложка/Формат: Paperback
Страницы: 422
Вес: 0.62 кг.
Дата издания: 23.02.1995
Серия: Lecture Notes in Artificial Intelligence
Язык: English
Размер: 234 x 156 x 23
Основная тема: Computer Science
Подзаголовок: Second European Conference, EuroCOLT '95, Barcelona, Spain, March 13 - 15, 1995. Proceedings
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This volume of conference proceedings explores the computational aspects of artificial and natural learning systems and machine learning. Key issues discussed include neural networks, genetic algorithms, robotics, pattern recognition, decision theory and cryptography.

The Elements of Statistical Learning

Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman
Название: The Elements of Statistical Learning
ISBN: 0387848576 ISBN-13(EAN): 9780387848570
Издательство: Springer
Рейтинг:
Цена: 69870.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.

Deep Learning

Автор: Goodfellow Ian, Bengio Yoshua, Courville Aaron
Название: Deep Learning
ISBN: 0262035618 ISBN-13(EAN): 9780262035613
Издательство: MIT Press
Рейтинг:
Цена: 90290.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject."
-- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.


Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 124150.00 T
Наличие на складе: Невозможна поставка.
Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.


Bayesian Reasoning and Machine Learning

Автор: Barber
Название: Bayesian Reasoning and Machine Learning
ISBN: 0521518148 ISBN-13(EAN): 9780521518147
Издательство: Cambridge Academ
Рейтинг:
Цена: 73920.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This practical introduction for final-year undergraduate and graduate students is ideally suited to computer scientists without a background in calculus and linear algebra. Numerous examples and exercises are provided. Additional resources available online and in the comprehensive software package include computer code, demos and teaching materials for instructors.

Principles and Theory for Data Mining and Machine Learning

Автор: Clarke
Название: Principles and Theory for Data Mining and Machine Learning
ISBN: 0387981349 ISBN-13(EAN): 9780387981345
Издательство: Springer
Рейтинг:
Цена: 186330.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Extensive treatment of the most up-to-date topicsProvides the theory and concepts behind popular and emerging methodsRange of topics drawn from Statistics, Computer Science, and Electrical Engineering

Algorithmic Learning Theory

Автор: Setsuo Arikawa; Arun K. Sharma
Название: Algorithmic Learning Theory
ISBN: 3540618635 ISBN-13(EAN): 9783540618638
Издательство: Springer
Рейтинг:
Цена: 74530.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Covering all areas related to algorithmic learning theory (ALT), ranging from theoretical foundations of machine learning to applications in several areas, this text presents papers from a workshop held on ALT in Sydney, in October 1996.

Computational Learning Theory

Автор: Anthony
Название: Computational Learning Theory
ISBN: 0521599229 ISBN-13(EAN): 9780521599221
Издательство: Cambridge Academ
Рейтинг:
Цена: 46470.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This is a self contained volume in which the authors concentrate on the `probably approximately correct model`. It will therefore form an introduction to the theory of computational learning, suitable for a broad spectrum of graduate students from theoretical computer science and mathematics.

Computational Learning Theory

Автор: Shai Ben-David
Название: Computational Learning Theory
ISBN: 3540626859 ISBN-13(EAN): 9783540626855
Издательство: Springer
Рейтинг:
Цена: 65210.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume presents 25 revised full papers selected from a total of 36 submissions to the Third European Conference on Computational Learning Theory, EuroCOLT `97. It spans the whole spectrum of computational learning theory, with an emphasis on mathematical models of machine learning.

Computational Learning Theory

Автор: Paul Fischer; Hans U. Simon
Название: Computational Learning Theory
ISBN: 3540657010 ISBN-13(EAN): 9783540657019
Издательство: Springer
Рейтинг:
Цена: 65210.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This text presents the proceedings of the 4th European Conference on Computational Learning Theory. The 23 contributions address topics such as learning from queries and counter examples, reinforcement learning, online learning and export advice, teaching and learning and inductive inference.

Computational Learning Theory

Автор: Jyrki Kivinen; Robert H. Sloan
Название: Computational Learning Theory
ISBN: 354043836X ISBN-13(EAN): 9783540438366
Издательство: Springer
Рейтинг:
Цена: 81050.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Constitutes the proceedings of the 15th Annual Conference on Computational Learning Theory, held in Australia in 2002. The 26 papers cover statistical learning theory, online learning, inductive inference, PAC learning, boosting and other learning paradigms.

Computational Learning Theory

Автор: David Helmbold; Bob Williamson
Название: Computational Learning Theory
ISBN: 3540423435 ISBN-13(EAN): 9783540423430
Издательство: Springer
Рейтинг:
Цена: 97820.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume constitutes the refereed proceedings of the 14th Annual and 5th European Conferences on Computational Learning Theory, COLT/EuroCOLT 2001. All current aspects of computational learning and its applications in a variety of fields are addressed.

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 90290.00 T
Наличие на складе: Нет в наличии.
Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия