Автор: Hooshang Nayebi Название: Advanced Statistics for Testing Assumed Causal Relationships ISBN: 3030547531 ISBN-13(EAN): 9783030547530 Издательство: Springer Рейтинг: Цена: 74530.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: It presents that potential effects of each independent variable on the dependent variable are not limited to direct and indirect effects. The path analysis shows each independent variable has a pure effect on the dependent variable. So, it can be shown the unique contribution of each independent variable to the variation of the dependent variable.
Автор: Fahrmeir Ludwig, Kneib Thomas, Lang Stefan Название: Regression: Models, Methods and Applications ISBN: 3662638819 ISBN-13(EAN): 9783662638811 Издательство: Springer Рейтинг: Цена: 102480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through numerous examples and case studies. The most important definitions and statements are concisely summarized in boxes, and the underlying data sets and code are available online on the book’s dedicated website. Availability of (user-friendly) software has been a major criterion for the methods selected and presented. The chapters address the classical linear model and its extensions, generalized linear models, categorical regression models, mixed models, nonparametric regression, structured additive regression, quantile regression and distributional regression models. Two appendices describe the required matrix algebra, as well as elements of probability calculus and statistical inference. In this substantially revised and updated new edition the overview on regression models has been extended, and now includes the relation between regression models and machine learning, additional details on statistical inference in structured additive regression models have been added and a completely reworked chapter augments the presentation of quantile regression with a comprehensive introduction to distributional regression models. Regularization approaches are now more extensively discussed in most chapters of the book. The book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written at an intermediate mathematical level and assumes only knowledge of basic probability, calculus, matrix algebra and statistics.
Автор: David Melamed, Eric W. Schoon, Ronald L. Breiger Название: Regression Inside Out ISBN: 1108744885 ISBN-13(EAN): 9781108744881 Издательство: Cambridge Academ Рейтинг: Цена: 27450.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Linear regression analysis, with its many generalizations, is the predominant quantitative method used throughout the social sciences and beyond. The goal of the method is to study relations among variables. In this book, Schoon, Melamed and Breiger turn regression modeling inside out to put the emphasis on the cases (people, organizations, and nations) that comprise the variables. By re-analyzing influential published research, they reveal new insights and present a principled way to unlock a set of more nuanced interpretations than has previously been attainable. The emphasis is on intuition and examples that can be reproduced using the code and datasets provided. Relating their contributions to methodologies that operate under quite different philosophical assumptions, the authors advance multi-method social science and help to bridge the divide between quantitative and qualitative research. The result is a modern, accessible, and innovative take on extracting knowledge from data.
Автор: Clive Loader Название: Local Regression and Likelihood ISBN: 1475772580 ISBN-13(EAN): 9781475772586 Издательство: Springer Рейтинг: Цена: 149060.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Separation of signal from noise is the most fundamental problem in data analysis, arising in such fields as: signal processing, econometrics, actuarial science, and geostatistics. This book introduces the local regression method in univariate and multivariate settings, with extensions to local likelihood and density estimation.
Автор: J.D. Jobson Название: Applied Multivariate Data Analysis ISBN: 1461269601 ISBN-13(EAN): 9781461269601 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: An easy to read survey of data analysis, linear regression models and analysis of variance. The extensive development of the linear model includes the use of the linear model approach to analysis of variance provides a strong link to statistical software packages, and is complemented by a thorough overview of theory.
Автор: Alexander Silbersdorff Название: Analysing Inequalities in Germany ISBN: 331965330X ISBN-13(EAN): 9783319653303 Издательство: Springer Рейтинг: Цена: 51230.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book seeks new perspectives on the growing inequalities that our societies face, putting forward Structured Additive Distributional Regression as a means of statistical analysis that circumvents the common problem of analytical reduction to simple point estimators.
Автор: Sengupta Ashis Et Al Название: Statistical Paradigms: Recent Advances And Reconciliations ISBN: 9814343951 ISBN-13(EAN): 9789814343954 Издательство: World Scientific Publishing Рейтинг: Цена: 105600.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: A collection of research articles on classical and emerging Statistical Paradigms - parametric, non-parametric and semi-parametric, frequentist and Bayesian - encompassing both theoretical advances and emerging applications in a variety of scientific disciplines.
Автор: Moodie Название: Linear Regression And Anova ISBN: 1439869510 ISBN-13(EAN): 9781439869512 Издательство: Taylor&Francis Рейтинг: Цена: 83690.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Designed for researchers primarily interested in what their data are revealing, this book presents statistical methods without burdening readers with matrix algebra and calculus. The book shows how high resolution, publication-ready graphics associated with regression and ANOVA methods are produced with virtually no effort by the SAS user.
Автор: Miller Название: Subset Selection in Regression ISBN: 1584881712 ISBN-13(EAN): 9781584881711 Издательство: Taylor&Francis Рейтинг: Цена: 183750.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Deals with the techniques for fitting and choosing models that are linear in their parameters and to understanding and correcting the bias introduced by selecting a model. This title includes a chapter on Bayesian methods and an example from the field of near infrared spectroscopy. It emphasises on cross-validation and focuses on bootstrapping.
Автор: Keith Название: Multiple Regression and Beyond ISBN: 1138061441 ISBN-13(EAN): 9781138061446 Издательство: Taylor&Francis Рейтинг: Цена: 86760.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Multiple Regression and Beyond offers a conceptually oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods.
Автор: Srivastava, Virendera K. , Giles, David E.A. Название: Seemingly Unrelated Regression Equations Models ISBN: 0367451484 ISBN-13(EAN): 9780367451486 Издательство: Taylor&Francis Рейтинг: Цена: 44910.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book brings together the scattered literature associated with the seemingly unrelated regression equations (SURE) model used by econometricians and others. It focuses on the theoretical statistical results associated with the SURE model.
Автор: Wakefield Название: Bayesian and Frequentist Regression Methods ISBN: 1441909249 ISBN-13(EAN): 9781441909244 Издательство: Springer Рейтинг: Цена: 102480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz