Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Towards responsible machine translation, Helena Moniz


Варианты приобретения
Цена: 121110.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 211 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Helena Moniz   (Хелена Мониш)
Название:  Towards responsible machine translation
Перевод названия: Хелена Мониш: На пути к ответственному машинному переводу
ISBN: 9783031146886
Издательство: Springer
Классификация:


ISBN-10: 3031146883
Обложка/Формат: Hardback
Страницы: 233
Вес: 0.55 кг.
Дата издания: 02.03.2023
Серия: Machine translation: technologies and applications
Издание: 1st ed. 2023
Иллюстрации: 1 illustrations, black and white; xvii, 233 p. 1 illus.
Размер: 235 x 155
Подзаголовок: Ethical and legal considerations in machine translation
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии

Automated Planning and Acting

Автор: Ghallab
Название: Automated Planning and Acting
ISBN: 1107037271 ISBN-13(EAN): 9781107037274
Издательство: Cambridge Academ
Рейтинг:
Цена: 70750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Autonomous AI systems need complex computational techniques for planning and performing actions. This textbook presents the most recent and advanced techniques within the field that allow systems such as the Mars rovers, intelligent harbor-management systems, or self-driving cards to act effectively in the real world.

Machine Translation

Автор: F. Derek Wong; Deyi Xiong
Название: Machine Translation
ISBN: 9811071330 ISBN-13(EAN): 9789811071331
Издательство: Springer
Рейтинг:
Цена: 55890.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings of the 13th China Workshop on Machine Translation, CWMT 2017, held in Dalian, China, in September 2017.
The 10 papers presented in this volume were carefully reviewed and selected from 26 submissions and focus on all aspects of machine translation, including preprocessing, neural machine translation models, hybrid model, evaluation method, and post-editing.

Bayesian Analysis in Natural Language Processing: Second Edition

Автор: Cohen Shay
Название: Bayesian Analysis in Natural Language Processing: Second Edition
ISBN: 1681735288 ISBN-13(EAN): 9781681735283
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 103490.00 T
Наличие на складе: Невозможна поставка.
Описание:

Natural language processing (NLP) went through a profound transformation in the mid-1980s when it shifted to make heavy use of corpora and data-driven techniques to analyze language.

Since then, the use of statistical techniques in NLP has evolved in several ways. One such example of evolution took place in the late 1990s or early 2000s, when full-fledged Bayesian machinery was introduced to NLP. This Bayesian approach to NLP has come to accommodate various shortcomings in the frequentist approach and to enrich it, especially in the unsupervised setting, where statistical learning is done without target prediction examples.

In this book, we cover the methods and algorithms that are needed to fluently read Bayesian learning papers in NLP and to do research in the area. These methods and algorithms are partially borrowed from both machine learning and statistics and are partially developed "in-house" in NLP. We cover inference techniques such as Markov chain Monte Carlo sampling and variational inference, Bayesian estimation, and nonparametric modeling. In response to rapid changes in the field, this second edition of the book includes a new chapter on representation learning and neural networks in the Bayesian context. We also cover fundamental concepts in Bayesian statistics such as prior distributions, conjugacy, and generative modeling. Finally, we review some of the fundamental modeling techniques in NLP, such as grammar modeling, neural networks and representation learning, and their use with Bayesian analysis.


Neural Network Methods in Natural Language Processing

Автор: Goldberg Yoav
Название: Neural Network Methods in Natural Language Processing
ISBN: 1627052984 ISBN-13(EAN): 9781627052986
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 76690.00 T
Наличие на складе: Нет в наличии.
Описание: Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries.The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

Envisioning Machine Translation in the Information Future

Автор: John S. White
Название: Envisioning Machine Translation in the Information Future
ISBN: 3540411178 ISBN-13(EAN): 9783540411178
Издательство: Springer
Рейтинг:
Цена: 65210.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Nearly everyone was comparing lists of the most important accomplishments and people of the last 10, 100, or 1000 years, imagining the radical changes likely over just the next few years, and at least mildly anxious about the potential Y2K apocalypse.

Machine Translation

Автор: Yorick Wilks
Название: Machine Translation
ISBN: 1441944478 ISBN-13(EAN): 9781441944474
Издательство: Springer
Рейтинг:
Цена: 130430.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A history of machine translation (MT) from the point of view of a major writer and innovator in the field is the subject of this book. It details the deep differences between rival groups on how best to do MT, and presents a global perspective covering historical and contemporary systems in Europe, the US and Japan.

Quality Estimation for Machine Translation

Автор: Lucia Specia, Carolina Scarton, Gustavo Henrique Paetzold
Название: Quality Estimation for Machine Translation
ISBN: 1681733757 ISBN-13(EAN): 9781681733753
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 87780.00 T
Наличие на складе: Невозможна поставка.
Описание: Many applications within natural language processing involve performing text-to-text transformations, i.e., given a text in natural language as input, systems are required to produce a version of this text (e.g., a translation), also in natural language, as output. Automatically evaluating the output of such systems is an important component in developing text-to-text applications. Two approaches have been proposed for this problem: (i) to compare the system outputs against one or more reference outputs using string matching-based evaluation metrics and (ii) to build models based on human feedback to predict the quality of system outputs without reference texts. Despite their popularity, reference-based evaluation metrics are faced with the challenge that multiple good (and bad) quality outputs can be produced by text-to-text approaches for the same input. This variation is very hard to capture, even with multiple reference texts. In addition, reference-based metrics cannot be used in production (e.g., online machine translation systems), when systems are expected to produce outputs for any unseen input. In this book, we focus on the second set of metrics, so-called Quality Estimation (QE) metrics, where the goal is to provide an estimate on how good or reliable the texts produced by an application are without access to gold-standard outputs. QE enables different types of evaluation that can target different types of users and applications. Machine learning techniques are used to build QE models with various types of quality labels and explicit features or learnt representations, which can then predict the quality of unseen system outputs. This book describes the topic of QE for text-to-text applications, covering quality labels, features, algorithms, evaluation, uses, and state-of-the-art approaches. It focuses on machine translation as application, since this represents most of the QE work done to date. It also briefly describes QE for several other applications, including text simplification, text summarization, grammatical error correction, and natural language generation.

Bayesian Analysis in Natural Language Processing: Second Edition

Автор: Cohen Shay
Название: Bayesian Analysis in Natural Language Processing: Second Edition
ISBN: 1681735261 ISBN-13(EAN): 9781681735269
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 82230.00 T
Наличие на складе: Невозможна поставка.
Описание:

Natural language processing (NLP) went through a profound transformation in the mid-1980s when it shifted to make heavy use of corpora and data-driven techniques to analyze language.

Since then, the use of statistical techniques in NLP has evolved in several ways. One such example of evolution took place in the late 1990s or early 2000s, when full-fledged Bayesian machinery was introduced to NLP. This Bayesian approach to NLP has come to accommodate various shortcomings in the frequentist approach and to enrich it, especially in the unsupervised setting, where statistical learning is done without target prediction examples.

In this book, we cover the methods and algorithms that are needed to fluently read Bayesian learning papers in NLP and to do research in the area. These methods and algorithms are partially borrowed from both machine learning and statistics and are partially developed "in-house" in NLP. We cover inference techniques such as Markov chain Monte Carlo sampling and variational inference, Bayesian estimation, and nonparametric modeling. In response to rapid changes in the field, this second edition of the book includes a new chapter on representation learning and neural networks in the Bayesian context. We also cover fundamental concepts in Bayesian statistics such as prior distributions, conjugacy, and generative modeling. Finally, we review some of the fundamental modeling techniques in NLP, such as grammar modeling, neural networks and representation learning, and their use with Bayesian analysis.


Machine Translation and Global Research: Towards Improved Machine Translation Literacy in the Scholarly Community

Автор: Lynne Bowker, Jairo Buitrago Ciro
Название: Machine Translation and Global Research: Towards Improved Machine Translation Literacy in the Scholarly Community
ISBN: 1787567222 ISBN-13(EAN): 9781787567221
Издательство: Emerald
Рейтинг:
Цена: 92140.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Lynne Bowker and Jairo Buitrago Ciro introduce the concept of machine translation literacy, a new kind of literacy for scholars and librarians in the digital age. This book is a must-read for researchers and information professionals eager to maximize the global reach and impact of any form of scholarly work.

Principles of Automated Negotiation

Автор: Fatima
Название: Principles of Automated Negotiation
ISBN: 1107002540 ISBN-13(EAN): 9781107002548
Издательство: Cambridge Academ
Рейтинг:
Цена: 50680.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: With an increasing number of applications in the context of multi-agent systems, automated negotiation is a rapidly growing area. Written by top researchers in the field, this state-of-the-art treatment of the subject explores key issues involved in the design of negotiating agents, covering strategic, heuristic, and axiomatic approaches. The authors discuss the potential benefits of automated negotiation as well as the unique challenges it poses for computer scientists and for researchers in artificial intelligence. They also consider possible applications and give readers a feel for the types of domains where automated negotiation is already being deployed. This book is ideal for graduate students and researchers in computer science who are interested in multi-agent systems. It will also appeal to negotiation researchers from disciplines such as management and business studies, psychology and economics.

Argumentation Mining

Автор: Manfred Stede, Jodi Schneider
Название: Argumentation Mining
ISBN: 1681734613 ISBN-13(EAN): 9781681734613
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 97950.00 T
Наличие на складе: Невозможна поставка.
Описание: Argumentation mining is an application of natural language processing (NLP) that emerged a few years ago and has recently enjoyed considerable popularity, as demonstrated by a series of international workshops and by a rising number of publications at the major conferences and journals of the field. Its goals are to identify argumentation in text or dialogue; to construct representations of the constellation of claims, supporting and attacking moves (in different levels of detail); and to characterize the patterns of reasoning that appear to license the argumentation. Furthermore, recent work also addresses the difficult tasks of evaluating the persuasiveness and quality of arguments. Some of the linguistic genres that are being studied include legal text, student essays, political discourse and debate, newspaper editorials, scientific writing, and others.The book starts with a discussion of the linguistic perspective, characteristics of argumentative language, and their relationship to certain other notions such as subjectivity.Besides the connection to linguistics, argumentation has for a long time been a topic in Artificial Intelligence, where the focus is on devising adequate representations and reasoning formalisms that capture the properties of argumentative exchange. It is generally very difficult to connect the two realms of reasoning and text analysis, but we are convinced that it should be attempted in the long term, and therefore we also touch upon some fundamentals of reasoning approaches.Then the book turns to its focus, the computational side of mining argumentation in text. We first introduce a number of annotated corpora that have been used in the research. From the NLP perspective, argumentation mining shares subtasks with research fields such as subjectivity and sentiment analysis, semantic relation extraction, and discourse parsing. Therefore, many technical approaches are being borrowed from those (and other) fields. We break argumentation mining into a series of subtasks, starting with the preparatory steps of classifying text as argumentative (or not) and segmenting it into elementary units. Then, central steps are the automatic identification of claims, and finding statements that support or oppose the claim. For certain applications, it is also of interest to compute a full structure of an argumentative constellation of statements. Next, we discuss a few steps that try to 'dig deeper': to infer the underlying reasoning pattern for a textual argument, to reconstruct unstated premises (so-called 'enthymemes'), and to evaluate the quality of the argumentation. We also take a brief look at 'the other side' of mining, i.e., the generation or synthesis of argumentative text.The book finishes with a summary of the argumentation mining tasks, a sketch of potential applications, and a-necessarily subjective-outlook for the field.

Natural Language Processing for the Semantic Web

Автор: Diana Maynard, Kalina Bontcheva, Isabelle Augenstein
Название: Natural Language Processing for the Semantic Web
ISBN: 1681732343 ISBN-13(EAN): 9781681732343
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 97950.00 T
Наличие на складе: Невозможна поставка.
Описание: Introduces core natural language processing (NLP) technologies to non-experts in an easily accessible way, as a series of building blocks that lead the user to understand key technologies, why they are required, and how to integrate them into Semantic Web applications.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия