Автор: Ariel Rosenfeld, Sarit Kraus Название: Predicting Human Decision-Making: From Prediction to Action ISBN: 1681732769 ISBN-13(EAN): 9781681732763 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 87780.00 T Наличие на складе: Невозможна поставка. Описание: Human decision-making often transcends our formal models of ""rationality."" Designing intelligent agents that interact proficiently with people necessitates the modeling of human behavior and the prediction of their decisions. In this book, we explore the task of automatically predicting human decision-making and its use in designing intelligent human-aware automated computer systems of varying natures—from purely conflicting interaction settings (e.g., security and games) to fully cooperative interaction settings (e.g., autonomous driving and personal robotic assistants). We explore the techniques, algorithms, and empirical methodologies for meeting the challenges that arise from the above tasks and illustrate major benefits from the use of these computational solutions in real-world application domains such as security, negotiations, argumentative interactions, voting systems, autonomous driving, and games. The book presents both the traditional and classical methods as well as the most recent and cutting edge advances, providing the reader with a panorama of the challenges and solutions in predicting human decision-making.
Автор: Ariel Rosenfeld, Sarit Kraus Название: Predicting Human Decision-Making: From Prediction to Action ISBN: 1681732742 ISBN-13(EAN): 9781681732749 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 66530.00 T Наличие на складе: Невозможна поставка. Описание: Human decision-making often transcends our formal models of ""rationality."" Designing intelligent agents that interact proficiently with people necessitates the modeling of human behavior and the prediction of their decisions. In this book, we explore the task of automatically predicting human decision-making and its use in designing intelligent human-aware automated computer systems of varying natures—from purely conflicting interaction settings (e.g., security and games) to fully cooperative interaction settings (e.g., autonomous driving and personal robotic assistants). We explore the techniques, algorithms, and empirical methodologies for meeting the challenges that arise from the above tasks and illustrate major benefits from the use of these computational solutions in real-world application domains such as security, negotiations, argumentative interactions, voting systems, autonomous driving, and games. The book presents both the traditional and classical methods as well as the most recent and cutting edge advances, providing the reader with a panorama of the challenges and solutions in predicting human decision-making.
Автор: Chen Название: Stochastic Methods for Modeling and Predicting Complex Dynamical Systems ISBN: 3031222482 ISBN-13(EAN): 9783031222481 Издательство: Springer Рейтинг: Цена: 37260.00 T Наличие на складе: Нет в наличии. Описание: This book enables readers to understand, model, and predict complex dynamical systems using new methods with stochastic tools. The author presents a unique combination of qualitative and quantitative modeling skills, novel efficient computational methods, rigorous mathematical theory, as well as physical intuitions and thinking. An emphasis is placed on the balance between computational efficiency and modeling accuracy, providing readers with ideas to build useful models in practice. Successful modeling of complex systems requires a comprehensive use of qualitative and quantitative modeling approaches, novel efficient computational methods, physical intuitions and thinking, as well as rigorous mathematical theories. As such, mathematical tools for understanding, modeling, and predicting complex dynamical systems using various suitable stochastic tools are presented. Both theoretical and numerical approaches are included, allowing readers to choose suitable methods in different practical situations. The author provides practical examples and motivations when introducing various mathematical and stochastic tools and merges mathematics, statistics, information theory, computational science, and data science. In addition, the author discusses how to choose and apply suitable mathematical tools to several disciplines including pure and applied mathematics, physics, engineering, neural science, material science, climate and atmosphere, ocean science, and many others. Readers will not only learn detailed techniques for stochastic modeling and prediction, but will develop their intuition as well. Important topics in modeling and prediction including extreme events, high-dimensional systems, and multiscale features are discussed.
Автор: Rosenfeld, Ariel Kraus, Sarit Название: Predicting Human Decision-Making ISBN: 3031000234 ISBN-13(EAN): 9783031000232 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ.