Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Information Theory, Guignard


Варианты приобретения
Цена: 139750.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 122 шт.  
При оформлении заказа до: 2025-10-27
Ориентировочная дата поставки: Декабрь
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Guignard
Название:  On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Information Theory
ISBN: 9783030952334
Издательство: Springer
Классификация:

ISBN-10: 3030952339
Обложка/Формат: Soft cover
Страницы: 158
Вес: 0.28 кг.
Дата издания: 27.03.2023
Серия: Springer Theses
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 43 illustrations, color; 25 illustrations, black and white; xviii, 158 p. 68 illus., 43 illus. in color.
Размер: 235 x 155
Читательская аудитория: Professional & vocational
Основная тема: Science, Humanities and Social Sciences, multidisciplinary
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The gathering and storage of data indexed in space and time are experiencing unprecedented growth, demanding for advanced and adapted tools to analyse them. This thesis deals with the exploration and modelling of complex high-frequency and non-stationary spatio-temporal data. It proposes an efficient framework in modelling with machine learning algorithms spatio-temporal fields measured on irregular monitoring networks, accounting for high dimensional input space and large data sets. The uncertainty quantification is enabled by specifying this framework with the extreme learning machine, a particular type of artificial neural network for which analytical results, variance estimation and confidence intervals are developed. Particular attention is also paid to a highly versatile exploratory data analysis tool based on information theory, the Fisher-Shannon analysis, which can be used to assess the complexity of distributional properties of temporal, spatial and spatio-temporal data sets. Examples of the proposed methodologies are concentrated on data from environmental sciences, with an emphasis on wind speed modelling in complex mountainous terrain and the resulting renewable energy assessment. The contributions of this thesis can find a large number of applications in several research domains where exploration, understanding, clustering, interpolation and forecasting of complex phenomena are of utmost importance.
Дополнительное описание: Introduction.- Study Area and Data Sets.- Advanced Exploratory Data Analysis.- Fisher-Shannon Analysis.- Spatio-Temporal Prediction with Machine Learning.- Uncertainty Quantification with Extreme Learning Machine.- Spatio-Temporal Modelling using Extreme


On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Information Theory

Автор: Guignard Fabian
Название: On Spatio-Temporal Data Modelling and Uncertainty Quantification Using Machine Learning and Information Theory
ISBN: 3030952304 ISBN-13(EAN): 9783030952303
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Particular attention is also paid to a highly versatile exploratory data analysis tool based on information theory, the Fisher-Shannon analysis, which can be used to assess the complexity of distributional properties of temporal, spatial and spatio-temporal data sets.

Quantification of Uncertainty: Improving Efficiency and Technology: Quiet Selected Contributions

Автор: D`Elia Marta, Gunzburger Max, Rozza Gianluigi
Название: Quantification of Uncertainty: Improving Efficiency and Technology: Quiet Selected Contributions
ISBN: 3030487202 ISBN-13(EAN): 9783030487201
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explores four guiding themes - reduced order modelling, high dimensional problems, efficient algorithms, and applications - by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs.

Uncertainty quantification and predictive computational science

Автор: Mcclarren, Ryan G.
Название: Uncertainty quantification and predictive computational science
ISBN: 3319995243 ISBN-13(EAN): 9783319995243
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties.

Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 38th Imac, a Conference and Exposition on Structural Dynamics 2020

Автор: Mao Zhu
Название: Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 38th Imac, a Conference and Exposition on Structural Dynamics 2020
ISBN: 3030476375 ISBN-13(EAN): 9783030476373
Издательство: Springer
Цена: 186330.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Meet Lela - a clever little girl, who is also very stubborn! Despite being encouraged by her mum and dad to learn a new language Lela refuses. This leaves Lela in a pickle at an important party where she can`t understand anything the grown-ups are saying! So Lela vows to learn all of the languages of the world - which she does one word at a time...

Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 38th Imac, a Conference and Exposition on Structural Dynamics 2020

Автор: Mao Zhu
Название: Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 38th Imac, a Conference and Exposition on Structural Dynamics 2020
ISBN: 3030487784 ISBN-13(EAN): 9783030487782
Издательство: Springer
Цена: 186330.00 T
Наличие на складе: Поставка под заказ.
Описание: This book is intended for periodontal residents and practicing periodontists who wish to incorporate the principles of moderate sedation into daily practice. Comprehensive airway management and rescue skills are then documented in detail so that the patient may be properly managed in the event that the sedation progresses beyond the intended level.

Quantification of Uncertainty: Improving Efficiency and Technology: Quiet Selected Contributions

Автор: D`Elia Marta, Gunzburger Max, Rozza Gianluigi
Название: Quantification of Uncertainty: Improving Efficiency and Technology: Quiet Selected Contributions
ISBN: 3030487237 ISBN-13(EAN): 9783030487232
Издательство: Springer
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explores four guiding themes - reduced order modelling, high dimensional problems, efficient algorithms, and applications - by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs.

Conceptual Modeling for Traditional and Spatio-Temporal Applications

Автор: Christine Parent; Stefano Spaccapietra; Esteban Zi
Название: Conceptual Modeling for Traditional and Spatio-Temporal Applications
ISBN: 3642067646 ISBN-13(EAN): 9783642067648
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: From environmental management to land planning and geo-marketing, the number of application domains that may greatly benefit from using data enriched with spatio-temporal features is expanding very rapidly.

Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems

Автор: Han-Xiong Li; Chenkun Qi
Название: Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems
ISBN: 9401782547 ISBN-13(EAN): 9789401782548
Издательство: Springer
Рейтинг:
Цена: 107130.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume provides a brief review of the previous work on model reduction and identification of DPS, and develops new spatio-temporal models and their relevant identification approaches. All modeling approaches are applied to industrial thermal processes.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия