Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Model-Based Clustering, Classification, and Density Estimation Using mclust in R, Scrucca, Luca


Варианты приобретения
Цена: 153120.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 176 шт.  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Scrucca, Luca
Название:  Model-Based Clustering, Classification, and Density Estimation Using mclust in R
ISBN: 9781032234960
Издательство: Taylor&Francis
Классификация:




ISBN-10: 1032234962
Обложка/Формат: Hardback
Страницы: 242
Вес: 0.57 кг.
Дата издания: 20.04.2023
Серия: Chapman & hall/crc the r series
Иллюстрации: 72 line drawings, color; 28 line drawings, black and white; 72 illustrations, color; 28 illustrations, black and white
Размер: 161 x 242 x 18
Читательская аудитория: Professional & vocational
Рейтинг:
Поставляется из: Европейский союз

Model-based clustering, classification, and density estimation using mclust in r

Автор: Scrucca, Luca Fraley, Chris Murphy, T. Brendan Adrian E., Raftery
Название: Model-based clustering, classification, and density estimation using mclust in r
ISBN: 1032234954 ISBN-13(EAN): 9781032234953
Издательство: Taylor&Francis
Рейтинг:
Цена: 54090.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Model-based clustering and classification methods provide a systematic statistical approach to clustering, classification, and density estimation via mixture modeling. The model-based framework allows the problems of choosing or developing methods to be understood within the context of statistical modeling.

Mathematical Classification and Clustering

Автор: Boris Mirkin
Название: Mathematical Classification and Clustering
ISBN: 146138057X ISBN-13(EAN): 9781461380573
Издательство: Springer
Рейтинг:
Цена: 111790.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The monograph is devoted entirely to clustering, a discipline dispersed through many theoretical and application areas, from mathematical statistics and combina- torial optimization to biology, sociology and organizational structures.

Time Series Clustering and Classification

Автор: Maharaj, Elizabeth Ann
Название: Time Series Clustering and Classification
ISBN: 1032093498 ISBN-13(EAN): 9781032093499
Издательство: Taylor&Francis
Рейтинг:
Цена: 48990.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.

Multicriteria and Clustering

Автор: Zacharoula Andreopoulou; Christiana Koliouska; Con
Название: Multicriteria and Clustering
ISBN: 3319555642 ISBN-13(EAN): 9783319555645
Издательство: Springer
Рейтинг:
Цена: 83850.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Further, it presents some of the most common methodologies for statistical analysis and mathematical modeling, and discusses in detail ten examples that explain and show "hands-on" how operational research can be used in key decision-making processes at enterprises in the agricultural food and environmental industries.

Data Science

Автор: Francesco Palumbo; Angela Montanari; Maurizio Vich
Название: Data Science
ISBN: 331955722X ISBN-13(EAN): 9783319557229
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This edited volume on the latest advances in data science covers a wide range of topics in the context of data analysis and classification. In particular, it includes contributions on classification methods for high-dimensional data, clustering methods, multivariate statistical methods, and various applications.

Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition

Автор: Collica Randall S.
Название: Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition
ISBN: 1642953091 ISBN-13(EAN): 9781642953091
Издательство: Неизвестно
Рейтинг:
Цена: 105390.00 T
Наличие на складе: Невозможна поставка.
Описание: Understanding your customers is the key to your company's success

Segmentation is one of the first and most basic machine learning methods. It can be used by companies to understand their customers better, boost relevance of marketing messaging, and increase efficacy of predictive models. In Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition, Randy Collica explains, in step-by-step fashion, the most commonly available techniques for segmentation using the powerful data mining software SAS Enterprise Miner.

A working guide that uses real-world data, this new edition will show you how to segment customers more intelligently and achieve the one-to-one customer relationship that your business needs. Step-by-step examples and exercises, using a number of machine learning and data mining techniques, clearly illustrate the concepts of segmentation and clustering in the context of customer relationship management.

The book includes four parts, each of which increases in complexity. Part 1 reviews the basics of segmentation and clustering at an introductory level, providing examples from a variety of industries. Part 2 offers an in-depth treatment of segmentation with practical topics, such as when and how to update your models. Part 3 goes beyond traditional segmentation practices to introduce recommended strategies for clustering product affinities, handling missing data, and incorporating textual records into your predictive model with SAS Text Miner. Finally, part 4 takes segmentation to a new level with advanced techniques, such as clustering of product associations, developing segmentation-scoring models from customer survey data, combining segmentations using ensemble segmentation, and segmentation of customer transactions.

New to the third edition is a chapter that focuses on predictive models within microsegments and combined segments, and a new parallel process technique is introduced using SAS Factory Miner. In addition, all examples have been updated to the latest version of SAS Enterprise Miner.

Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition

Автор: Collica Randall S.
Название: Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition
ISBN: 1629601063 ISBN-13(EAN): 9781629601069
Издательство: Неизвестно
Рейтинг:
Цена: 80870.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.

Financial models with levy processes and volatility clustering

Автор: Rachev, Svetlozar T. Kim, Young Shim Bianchi, Mich
Название: Financial models with levy processes and volatility clustering
ISBN: 0470482354 ISBN-13(EAN): 9780470482353
Издательство: Wiley
Рейтинг:
Цена: 89760.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: * In this book, authors Rachev, Kim, Bianchi, and Fabozzi present readers with the notions of risk and their corresponding performance measures.

An Introduction to Clustering with R

Автор: Giordani Paolo, Ferraro Maria Brigida, Martella Francesca
Название: An Introduction to Clustering with R
ISBN: 9811305528 ISBN-13(EAN): 9789811305528
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The purpose of this book is to thoroughly prepare the reader for applied research in clustering. This book provides an accessible and comprehensive introduction to clustering and offers practical guidelines for applying clustering tools by carefully chosen real-life datasets and extensive data analyses.

Data Clustering: Theory, Algorithms, and Applications

Автор: Chaoqun Ma, Guojun Gan, Jianhong Wu
Название: Data Clustering: Theory, Algorithms, and Applications
ISBN: 1611976324 ISBN-13(EAN): 9781611976328
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 81090.00 T
Наличие на складе: Поставка под заказ.
Описание: Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments.Data Clustering: Theory, Algorithms, and Applications, Second Edition:covers the basics of data clustering,includes a list of popular clustering algorithms, andprovides program code that helps users implement clustering algorithms.

Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering

Автор: Isra?l C?sar Lerman
Название: Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering
ISBN: 1447167910 ISBN-13(EAN): 9781447167914
Издательство: Springer
Рейтинг:
Цена: 153720.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Preface.- On Some Facets of the Partition Set of a Finite Set.- Two Methods of Non-hierarchical Clustering.- Structure and Mathematical Representation of Data.- Ordinal and Metrical Analysis of the Resemblance Notion.- Comparing Attributes by a Probabilistic and Statistical Association I.- Comparing Attributes by a Probabilistic and Statistical Association II.- Comparing Objects or Categories Described by Attributes.- The Notion of "Natural" Class, Tools for its Interpretation. The Classifiability Concept.- Quality Measures in Clustering.- Building a Classification Tree.- Applying the LLA Method to Real Data.- Conclusion and Thoughts for Future Works


Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering

Автор: Lerman Israлl Cйsar
Название: Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering
ISBN: 1447173929 ISBN-13(EAN): 9781447173922
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Preface.- On Some Facets of the Partition Set of a Finite Set.- Two Methods of Non-hierarchical Clustering.- Structure and Mathematical Representation of Data.- Ordinal and Metrical Analysis of the Resemblance Notion.- Comparing Attributes by a Probabilistic and Statistical Association I.- Comparing Attributes by a Probabilistic and Statistical Association II.- Comparing Objects or Categories Described by Attributes.- The Notion of "Natural" Class, Tools for its Interpretation. The Classifiability Concept.- Quality Measures in Clustering.- Building a Classification Tree.- Applying the LLA Method to Real Data.- Conclusion and Thoughts for Future Works



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия