Post-Shrinkage Strategies in Statistical and Machine Learning for High Dimensional Data, Ahmed, Syed Ejaz
Автор: Dominique Fourdrinier; William E. Strawderman; Mar Название: Shrinkage Estimation ISBN: 303002184X ISBN-13(EAN): 9783030021849 Издательство: Springer Рейтинг: Цена: 130430.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book provides a coherent framework for understanding shrinkage estimation in statistics. The term refers to modifying a classical estimator by moving it closer to a target which could be known a priori or arise from a model. The goal is to construct estimators with improved statistical properties. The book focuses primarily on point and loss estimation of the mean vector of multivariate normal and spherically symmetric distributions.
Chapter 1 reviews the statistical and decision theoretic terminology and results that will be used throughout the book.
Chapter 2 is concerned with estimating the mean vector of a multivariate normal distribution under quadratic loss from a frequentist perspective. In Chapter 3 the authors take a Bayesian view of shrinkage estimation in the normal setting. Chapter 4 introduces the general classes of spherically and elliptically symmetric distributions. Point and loss estimation for these broad classes are studied in subsequent chapters. In particular, Chapter 5 extends many of the results from Chapters 2 and 3 to spherically and elliptically symmetric distributions.
Chapter 6 considers the general linear model with spherically symmetric error distributions when a residual vector is available. Chapter 7 then considers the problem of estimating a location vector which is constrained to lie in a convex set. Much of the chapter is devoted to one of two types of constraint sets, balls and polyhedral cones. In Chapter 8 the authors focus on loss estimation and data-dependent evidence reports.
Appendices cover a number of technical topics including weakly differentiable functions; examples where Stein’s identity doesn’t hold; Stein’s lemma and Stokes’ theorem for smooth boundaries; harmonic, superharmonic and subharmonic functions; and modified Bessel functions.
Автор: Gruber, Marvin Название: Improving Efficiency by Shrinkage ISBN: 0367579367 ISBN-13(EAN): 9780367579364 Издательство: Taylor&Francis Рейтинг: Цена: 48990.00 T Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Koch Название: Analysis of Multivariate and High-Dimensional Data ISBN: 0521887933 ISBN-13(EAN): 9780521887939 Издательство: Cambridge Academ Рейтинг: Цена: 70750.00 T Наличие на складе: Поставка под заказ. Описание: `Big data` poses challenges that require both classical multivariate methods and modern machine-learning techniques. This coherent treatment integrates theory with data analysis, visualisation and interpretation of the analysis. Problems, data sets and MATLAB (R) code complete the package. It is suitable for master`s/graduate students in statistics and working scientists in data-rich disciplines.
Автор: He, Yulei Название: Multiple Imputation Analysis For Ob ISBN: 1498722067 ISBN-13(EAN): 9781498722063 Издательство: Taylor&Francis Рейтинг: Цена: 91860.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis.
Автор: J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Название: Deep Learning Techniques and Optimization Strategies in Big Data Analytics ISBN: 1799811921 ISBN-13(EAN): 9781799811923 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 239310.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.
Автор: S. Ejaz Ahmed Название: Penalty, Shrinkage and Pretest Strategies ISBN: 3319031481 ISBN-13(EAN): 9783319031484 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The objective of this book is to compare the statistical properties of penalty and non-penalty estimation strategies for some popular models.
Автор: Tsukuma Hisayuki, Kubokawa Tatsuya Название: Shrinkage Estimation for Mean and Covariance Matrices ISBN: 9811515956 ISBN-13(EAN): 9789811515958 Издательство: Springer Рейтинг: Цена: 55890.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book provides a self-contained introduction to shrinkage estimation for matrix-variate normal distribution models.
Автор: Gruber, Marvin Название: Improving Efficiency by Shrinkage ISBN: 0824701569 ISBN-13(EAN): 9780824701567 Издательство: Taylor&Francis Рейтинг: Цена: 377690.00 T Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Giraud Название: Introduction to High-Dimensional Statistics ISBN: 1482237946 ISBN-13(EAN): 9781482237948 Издательство: Taylor&Francis Рейтинг: Цена: 64300.00 T Наличие на складе: Нет в наличии. Описание: Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians and data analysts and has required the development of new statistical methods capable of separating the signal from the noise. Introduction to High-Dimensional Statistics is a concise guide to state-of-the-art models, techniques, and approaches for handling high-dimensional data. The book is intended to expose the reader to the key concepts and ideas in the most simple settings possible while avoiding unnecessary technicalities. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this highly accessible text: Describes the challenges related to the analysis of high-dimensional data Covers cutting-edge statistical methods including model selection, sparsity and the lasso, aggregation, and learning theory Provides detailed exercises at the end of every chapter with collaborative solutions on a wikisite Illustrates concepts with simple but clear practical examples Introduction to High-Dimensional Statistics is suitable for graduate students and researchers interested in discovering modern statistics for massive data. It can be used as a graduate text or for self-study.
Автор: Janine Bennett; Fabien Vivodtzev; Valerio Pascucci Название: Topological and Statistical Methods for Complex Data ISBN: 3662513706 ISBN-13(EAN): 9783662513705 Издательство: Springer Рейтинг: Цена: 111790.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013.
Автор: Arnoldo Frigessi; Peter B?hlmann; Ingrid Glad; Met Название: Statistical Analysis for High-Dimensional Data ISBN: 3319270974 ISBN-13(EAN): 9783319270975 Издательство: Springer Рейтинг: Цена: 111790.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyv gar, Lofoten, Norway, in May 2014.
The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in "big data" situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.
Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.
Автор: Janine Bennett; Fabien Vivodtzev; Valerio Pascucci Название: Topological and Statistical Methods for Complex Data ISBN: 3662448998 ISBN-13(EAN): 9783662448991 Издательство: Springer Рейтинг: Цена: 130430.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz