Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Hybrid models for Hydrological Forecasting: integration of data-driven and conceptual modelling techniques, Corzo Perez, Gerald Augus


Варианты приобретения
Цена: 65320.00T
Кол-во:
 о цене
Наличие: Отсутствует. 
Возможна поставка под заказ. Дата поступления на склад уточняется после оформления заказа


Добавить в корзину
в Мои желания

Автор: Corzo Perez, Gerald Augus
Название:  Hybrid models for Hydrological Forecasting: integration of data-driven and conceptual modelling techniques
ISBN: 9780415565974
Издательство: Taylor&Francis
Классификация:
ISBN-10: 0415565979
Обложка/Формат: Paperback
Страницы: 228
Вес: 0.40 кг.
Дата издания: 15.01.2010
Размер: 244 x 171 x 14
Читательская аудитория: Professional & vocational
Подзаголовок: Unesco-ihe phd thesis
Рейтинг:
Поставляется из: Европейский союз

Hydrological Forecasting

Автор: J. Nemec
Название: Hydrological Forecasting
ISBN: 9027722595 ISBN-13(EAN): 9789027722591
Издательство: Springer
Рейтинг:
Цена: 139310.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Since a large percentage of losses in human life and material damage from weather-related disasters are caused by water, either by its excess or scarcity, the concern about water has been increasingly associated with these disasters.

Improved Hydrological Understanding of a Semi-Arid Subtropical Transboundary Basin Using Multiple Techniques - The Incomati River Basin

Автор: Okello, Saraiva
Название: Improved Hydrological Understanding of a Semi-Arid Subtropical Transboundary Basin Using Multiple Techniques - The Incomati River Basin
ISBN: 0367280752 ISBN-13(EAN): 9780367280758
Издательство: Taylor&Francis
Рейтинг:
Цена: 93910.00 T
Наличие на складе: Нет в наличии.
Описание: Comprehensive statistical and trend analysis of rainfall and streamflow were conducted to describe the streamflow regime and trends in the semi-arid Incomati basin. This provides the basis for better operational water management in the catchment.

Environmental and Hydrological Systems Modelling

Автор: Jayawardena, A W
Название: Environmental and Hydrological Systems Modelling
ISBN: 041546532X ISBN-13(EAN): 9780415465328
Издательство: Taylor&Francis
Рейтинг:
Цена: 78590.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.

Hydrological Data Driven Modelling

Автор: Renji Remesan; Jimson Mathew
Название: Hydrological Data Driven Modelling
ISBN: 3319350285 ISBN-13(EAN): 9783319350288
Издательство: Springer
Рейтинг:
Цена: 95770.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis.

Hydrological data driven modelling

Автор: Remesan, Renji Mathew, Jimson
Название: Hydrological data driven modelling
ISBN: 3319092340 ISBN-13(EAN): 9783319092348
Издательство: Springer
Рейтинг:
Цена: 113190.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Hydrological Data Driven Modelling

Hydrological Forecasting

Автор: J. Nemec
Название: Hydrological Forecasting
ISBN: 9401085803 ISBN-13(EAN): 9789401085809
Издательство: Springer
Рейтинг:
Цена: 130590.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Since a large percentage of losses in human life and material damage from weather-related disasters are caused by water, either by its excess or scarcity, the concern about water has been increasingly associated with these disasters.

Understanding Catchment Processes and Hydrological Modelling in the Abay/Upper Blue Nile Basin, Ethiopia

Автор: Gebrekristos, Sirak Tekleab
Название: Understanding Catchment Processes and Hydrological Modelling in the Abay/Upper Blue Nile Basin, Ethiopia
ISBN: 1138373303 ISBN-13(EAN): 9781138373303
Издательство: Taylor&Francis
Рейтинг:
Цена: 117390.00 T
Наличие на складе: Невозможна поставка.
Описание:

The Abay / Upper Blue Nile basin contributes the largest share of discharge to the river Nile. However, the basin exhibits large spatio-temporal variability in rainfall and runoff. Moreover, human activities also impact hydrological processes through intensive agriculture, overgrazing and deforestation, which substantially affect the basin hydrology. Thus, understanding hydrological processes and hydro-climatic variables at various spatio-temporal scales is essential for sustainable management of water resources in the region.

This research investigates the hydrology of the basin in depth using a range of methods at various spatio-temporal scales. The methods include long-term trend analysis of hydroclimatic variables, hydrologic responses analysis of land cover change, stable isotope techniques and process based rainfallrunoff modelling. A combination of field investigations with new measurements of precipitation, water levels and stable isotopes as well as existing hydro-climatic data offered gaining new insights about runoff generation processes in headwater catchments. The use of rainfall-runoff modelling in two meso-scale catchments of the Abay basin depict that a single model structure in a lumped way for the entire Abay basin cannot represent all the dominant hydrological processes. The results of the different approaches demonstrated the potential of the methods to better understand the basin hydrology in a data scarce region.


Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling

Автор: Kayastha, Nagendra
Название: Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling
ISBN: 1138373273 ISBN-13(EAN): 9781138373273
Издательство: Taylor&Francis
Рейтинг:
Цена: 117390.00 T
Наличие на складе: Невозможна поставка.
Описание:

Due to the complexity of hydrological systems a single model may be unable to capture the full range of a catchment response and accurately predict the streamflows. A solution could be the in use of several specialized models organized in the so-called committees. Refining the committee approach is one of the important topics of this study, and it is demonstrated that it allows for increased predictive capability of models.

Another topic addressed is the prediction of hydrologic models' uncertainty. The traditionally used Monte Carlo method is based on the past data and cannot be directly used for estimation of model uncertainty for the future model runs during its operation. In this thesis the so-called MLUE (Machine Learning for Uncertainty Estimation) approach is further explored and extended; in it the machine learning techniques (e.g. neural networks) are used to encapsulate the results of Monte Carlo experiments in a predictive model that is able to estimate uncertainty for the future states of the modelled system.

Furthermore, it is demonstrated that a committee of several predictive uncertainty models allows for an increase in prediction accuracy. Catchments in Nepal, UK and USA are used as case studies.

In flood modelling hydrological models are typically used in combination with hydraulic models forming a cascade, often supported by geospatial processing. For uncertainty analysis of flood inundation modelling of the Nzoia catchment (Kenya) SWAT hydrological and SOBEK hydrodynamic models are integrated, and the parametric uncertainty of the hydrological model is allowed to propagate through the model cascade using Monte Carlo simulations, leading to the generation of the probabilistic flood maps. Due to the high computational complexity of these experiments, the high performance (cluster) computing framework is designed and used.

This study refined a number of hydroinformatics techniques, thus enhancing uncertainty-based hydrological and integrated modelling.


Integrating Multiple Sources of Information for Improving Hydrological Modelling: An Ensemble Approach

Автор: Hartanto Isnaeni Murdi
Название: Integrating Multiple Sources of Information for Improving Hydrological Modelling: An Ensemble Approach
ISBN: 0367265435 ISBN-13(EAN): 9780367265434
Издательство: Taylor&Francis
Рейтинг:
Цена: 50010.00 T
Наличие на складе: Невозможна поставка.
Описание: A framework is proposed to enable effective use of multiple data sources in hydrological modelling. Together forming an ensemble of hydrological simulations.

Distributed Hydrological Modelling

Автор: Michael B. Abbott; Jens Christian Refsgaard
Название: Distributed Hydrological Modelling
ISBN: 9401065993 ISBN-13(EAN): 9789401065993
Издательство: Springer
Рейтинг:
Цена: 174150.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.

Coupled Models for the Hydrological Cycle

Автор: Axel Bronstert; Jesus Carrera; Pavel Kabat; Sabine
Название: Coupled Models for the Hydrological Cycle
ISBN: 3642061168 ISBN-13(EAN): 9783642061165
Издательство: Springer
Рейтинг:
Цена: 172350.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book considers an array of state-of-the-art coupling and modelling concepts. First the relevant Earth system cycles are presented, followed by a discussion on scale issues and multiple equilibria. Several applications are presented, where a focus is on cases where the hydrological cycle plays a central role.

Satellite Remote Sensing in Hydrological Data Assimilation

Автор: Mehdi Khaki
Название: Satellite Remote Sensing in Hydrological Data Assimilation
ISBN: 3030373746 ISBN-13(EAN): 9783030373740
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents the fundamentals of data assimilation and reviews the application of satellite remote sensing in hydrological data assimilation. Satellite remote sensing data provides a great opportunity to improve the performance of models through data assimilation.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия