Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Dynamic Network Representation Based on Latent Factorization of Tensors, Wu


Варианты приобретения
Цена: 46570.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 179 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Wu
Название:  Dynamic Network Representation Based on Latent Factorization of Tensors
ISBN: 9789811989339
Издательство: Springer
Классификация:
ISBN-10: 9811989338
Обложка/Формат: Soft cover
Страницы: 80
Вес: 0.15 кг.
Дата издания: 08.03.2023
Серия: SpringerBriefs in Computer Science
Язык: English
Издание: 1st ed. 2023
Иллюстрации: 16 illustrations, color; 4 illustrations, black and white; viii, 80 p. 20 illus., 16 illus. in color.
Размер: 235 x 155
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: A dynamic network is frequently encountered in various real industrial applications, such as the Internet of Things. It is composed of numerous nodes and large-scale dynamic real-time interactions among them, where each node indicates a specified entity, each directed link indicates a real-time interaction, and the strength of an interaction can be quantified as the weight of a link. As the involved nodes increase drastically, it becomes impossible to observe their full interactions at each time slot, making a resultant dynamic network High Dimensional and Incomplete (HDI). An HDI dynamic network with directed and weighted links, despite its HDI nature, contains rich knowledge regarding involved nodes’ various behavior patterns. Therefore, it is essential to study how to build efficient and effective representation learning models for acquiring useful knowledge. In this book, we first model a dynamic network into an HDI tensor and present the basic latent factorization of tensors (LFT) model. Then, we propose four representative LFT-based network representation methods. The first method integrates the short-time bias, long-time bias and preprocessing bias to precisely represent the volatility of network data. The second method utilizes a proportion-al-integral-derivative controller to construct an adjusted instance error to achieve a higher convergence rate. The third method considers the non-negativity of fluctuating network data by constraining latent features to be non-negative and incorporating the extended linear bias. The fourth method adopts an alternating direction method of multipliers framework to build a learning model for implementing representation to dynamic networks with high preciseness and efficiency.
Дополнительное описание: Chapter 1 IntroductionChapter.- 2 Multiple Biases-Incorporated Latent Factorization of tensors.- Chapter 3 PID-Incorporated Latent Factorization of Tensors.- Chapter 4 Diverse Biases Nonnegative Latent Factorization of Tensors.- Chapter 5 ADMM-Based Nonne


Matrix and Tensor Factorization Techniques for Recommender Systems

Автор: Panagiotis Symeonidis; Andreas Zioupos
Название: Matrix and Tensor Factorization Techniques for Recommender Systems
ISBN: 3319413562 ISBN-13(EAN): 9783319413563
Издательство: Springer
Рейтинг:
Цена: 51230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods.

Robust Latent Feature Learning for Incomplete Big Data

Автор: Wu
Название: Robust Latent Feature Learning for Incomplete Big Data
ISBN: 9811981396 ISBN-13(EAN): 9789811981395
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty. In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth L1-norm, improving robustness of latent feature learning using L1-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent feature learning. Readers can obtain an overview of the challenges of analyzing incomplete big data and how to employ latent feature learning to build a robust model to analyze incomplete big data. In addition, this book provides several algorithms and real application cases, which can help students, researchers, and professionals easily build their models to analyze incomplete big data.

Non-Negative Matrix Factorization Techniques: Advances in Theory and Applications

Автор: Naik Ganesh R.
Название: Non-Negative Matrix Factorization Techniques: Advances in Theory and Applications
ISBN: 3662517000 ISBN-13(EAN): 9783662517000
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book collects new results, concepts and further developments of NMF. This book can be a good reference work for researchers and engineers interested in NMF, and can also be used as a handbook for students and professionals seeking to gain a better understanding of the latest applications of NMF.

Guide to Three Dimensional Structure and Motion Factorization

Автор: Guanghui Wang; Jonathan Wu
Название: Guide to Three Dimensional Structure and Motion Factorization
ISBN: 1447125878 ISBN-13(EAN): 9781447125877
Издательство: Springer
Рейтинг:
Цена: 107130.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This practical guide provides a comprehensive overview of Euclidean structure and motion recovery, with a specific focus on factorization-based algorithms. The text discusses the latest research in the field and presents new algorithms developed by the authors.

Segmentation and Separation of Overlapped Latent Fingerprints

Автор: Branka Stojanovi?; Oge Marques; Aleksandar Ne?kovi
Название: Segmentation and Separation of Overlapped Latent Fingerprints
ISBN: 3030233634 ISBN-13(EAN): 9783030233631
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

This Springerbrief presents an overview of problems and technologies behind segmentation and separation of overlapped latent fingerprints, which are two fundamental steps in the context of fingerprint matching systems. It addresses five main aspects: (1) the need for overlapped latent fingerprint segmentation and separation in the context of fingerprint verification systems; (2) the different datasets available for research on overlapped latent fingerprints; (3) selected algorithms and techniques for segmentation of overlapped latent fingerprints; (4) selected algorithms and techniques for separation of overlapped latent fingerprints; and (5) the use of deep learning techniques for segmentation and separation of overlapped latent fingerprints.
By offering a structured overview of the most important approaches currently available, putting them in perspective, and suggesting numerous resources for further exploration, this book gives its readers a clear path for learning new topics and engaging in related research. Written from a technical perspective, and yet using language and terminology accessible to non-experts, it describes the technologies, introduces relevant datasets, highlights the most important research results in each area, and outlines the most challenging open research questions.
This Springerbrief targets researchers, professionals and advanced-level students studying and working in computer science, who are interested in the field of fingerprint matching and biometrics. Readers who want to deepen their understanding of specific topics will find more than one hundred references to additional sources of related information.

Latent Factor Analysis for High-dimensional and Sparse Matrices

Автор: Yuan
Название: Latent Factor Analysis for High-dimensional and Sparse Matrices
ISBN: 9811967024 ISBN-13(EAN): 9789811967023
Издательство: Springer
Рейтинг:
Цена: 41920.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question. This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications. The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.

Non-negative Matrix Factorization Techniques

Автор: Ganesh R. Naik
Название: Non-negative Matrix Factorization Techniques
ISBN: 3662483300 ISBN-13(EAN): 9783662483305
Издательство: Springer
Рейтинг:
Цена: 74530.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book collects new results, concepts and further developments of NMF. This book can be a good reference work for researchers and engineers interested in NMF, and can also be used as a handbook for students and professionals seeking to gain a better understanding of the latest applications of NMF.

Context-Aware Ranking with Factorization Models

Автор: Steffen Rendle
Название: Context-Aware Ranking with Factorization Models
ISBN: 3642423973 ISBN-13(EAN): 9783642423970
Издательство: Springer
Рейтинг:
Цена: 104480.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Context-aware ranking is an important task in search engine ranking. This book presents a generic method for context-aware ranking as well as its application. It applies this general theory to the three scenarios of item, tag and sequential-set recommendation.

Primality Testing and Integer Factorization in Public-Key Cryptography

Автор: Song Y. Yan
Название: Primality Testing and Integer Factorization in Public-Key Cryptography
ISBN: 1441945865 ISBN-13(EAN): 9781441945860
Издательство: Springer
Рейтинг:
Цена: 153720.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Intended for advanced level students in computer science and mathematics, this key text, now in a brand new edition, provides a survey of recent progress in primality testing and integer factorization, with implications for factoring based public key cryptography.

Latent Variable Analysis and Signal Separation

Автор: Emmanuel Vincent; Arie Yeredor; Zbyn?k Koldovsk?;
Название: Latent Variable Analysis and Signal Separation
ISBN: 3319224816 ISBN-13(EAN): 9783319224817
Издательство: Springer
Рейтинг:
Цена: 59630.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the proceedings of the 12th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICS 2015, held in Liberec, Czech Republic, in August 2015. Five special topics are addressed: tensor-based methods for blind signal separation;


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия