Convolutional Neural Networks for Medical Applications, Teoh
Автор: Le Lu Название: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics ISBN: 3030139689 ISBN-13(EAN): 9783030139681 Издательство: Springer Рейтинг: Цена: 149060.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases.
Автор: Cootsona, Greg Название: Convolutional Neural Networks for Medical Image Processing Applications ISBN: 1032104007 ISBN-13(EAN): 9781032104003 Издательство: Taylor&Francis Рейтинг: Цена: 148010.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book contains applications of CNN methods. The content is quite extensive, including the application of different CNN methods to various medical image processing problems. Readers will be able to analyze the effects of CNN methods presented in the book in medical applications.
Автор: Lu Le, Wang Xiaosong, Carneiro Gustavo Название: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics ISBN: 3030139719 ISBN-13(EAN): 9783030139711 Издательство: Springer Рейтинг: Цена: 79190.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases.
Автор: Le Lu; Yefeng Zheng; Gustavo Carneiro; Lin Yang Название: Deep Learning and Convolutional Neural Networks for Medical Image Computing ISBN: 3319827138 ISBN-13(EAN): 9783319827131 Издательство: Springer Рейтинг: Цена: 149060.00 T Наличие на складе: Поставка под заказ. Описание: This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.
Автор: Zafar Iffat, Tzanidou Giounona, Burton Richard Название: Hands-on Convolutional Neural Networks with Tensorflow ISBN: 1789130336 ISBN-13(EAN): 9781789130331 Издательство: Неизвестно Рейтинг: Цена: 40450.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Convolutional Neural Networks (CNN) are one of the most popular architectures used in computer vision apps. This book is an introduction to CNNs through solving real-world problems in deep learning while teaching you their implementation in popular Python library - TensorFlow. By the end of the book, you will be training CNNs in no time!
Автор: Abich Название: Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Constrained IoT Edge Devices ISBN: 3031185986 ISBN-13(EAN): 9783031185984 Издательство: Springer Рейтинг: Цена: 74530.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book describes an extensive and consistent soft error assessment of convolutional neural network (CNN) models from different domains through more than 14.8 million fault injections, considering different precision bit-width configurations, optimization parameters, and processor models. The authors also evaluate the relative performance, memory utilization, and soft error reliability trade-offs analysis of different CNN models considering a compiler-based technique w.r.t. traditional redundancy approaches.
Автор: Hamed Habibi Aghdam; Elnaz Jahani Heravi Название: Guide to Convolutional Neural Networks ISBN: 3319861905 ISBN-13(EAN): 9783319861906 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Поставка под заказ. Описание: This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification.
Автор: Umberto Michelucci Название: Advanced Applied Deep Learning ISBN: 1484249755 ISBN-13(EAN): 9781484249758 Издательство: Springer Рейтинг: Цена: 41920.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Develop and optimize deep learning models with advanced architectures. This book teaches you the intricate details and subtleties of the algorithms that are at the core of convolutional neural networks. In Advanced Applied Deep Learning, you will study advanced topics on CNN and object detection using Keras and TensorFlow. Along the way, you will look at the fundamental operations in CNN, such as convolution and pooling, and then look at more advanced architectures such as inception networks, resnets, and many more. While the book discusses theoretical topics, you will discover how to work efficiently with Keras with many tricks and tips, including how to customize logging in Keras with custom callback classes, what is eager execution, and how to use it in your models. Finally, you will study how object detection works, and build a complete implementation of the YOLO (you only look once) algorithm in Keras and TensorFlow. By the end of the book you will have implemented various models in Keras and learned many advanced tricks that will bring your skills to the next level.
What You Will LearnSee how convolutional neural networks and object detection workSave weights and models on diskPause training and restart it at a later stage Use hardware acceleration (GPUs) in your codeWork with the Dataset TensorFlow abstraction and use pre-trained models and transfer learningRemove and add layers to pre-trained networks to adapt them to your specific projectApply pre-trained models such as Alexnet and VGG16 to new datasets Who This Book Is ForScientists and researchers with intermediate-to-advanced Python and machine learning know-how. Additionally, intermediate knowledge of Keras and TensorFlow is expected.
Автор: Salman Khan, Hossein Rahmani, Syed Afaq Ali Shah, Mohammed Bennamoun Название: A Guide to Convolutional Neural Networks for Computer Vision ISBN: 1681732785 ISBN-13(EAN): 9781681732787 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 102570.00 T Наличие на складе: Невозможна поставка. Описание: Computer vision has become increasingly important and effective in recent years due to its wide-ranging applications in areas as diverse as smart surveillance and monitoring, health and medicine, sports and recreation, robotics, drones, and self-driving cars. Visual recognition tasks, such as image classification, localization, and detection, are the core building blocks of many of these applications, and recent developments in Convolutional Neural Networks (CNNs) have led to outstanding performance in these state-of-the-art visual recognition tasks and systems. As a result, CNNs now form the crux of deep learning algorithms in computer vision.This self-contained guide will benefit those who seek to both understand the theory behind CNNs and to gain hands-on experience on the application of CNNs in computer vision. It provides a comprehensive introduction to CNNs starting with the essential concepts behind neural networks: training, regularization, and optimization of CNNs. The book also discusses a wide range of loss functions, network layers, and popular CNN architectures, reviews the different techniques for the evaluation of CNNs, and presents some popular CNN tools and libraries that are commonly used in computer vision. Further, this text describes and discusses case studies that are related to the application of CNN in computer vision, including image classification, object detection, semantic segmentation, scene understanding, and image generation.This book is ideal for undergraduate and graduate students, as no prior background knowledge in the field is required to follow the material, as well as new researchers, developers, engineers, and practitioners who are interested in gaining a quick understanding of CNN models.
Автор: Lili Mou; Zhi Jin Название: Tree-Based Convolutional Neural Networks ISBN: 9811318697 ISBN-13(EAN): 9789811318696 Издательство: Springer Рейтинг: Цена: 51230.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book proposes a novel neural architecture, tree-based convolutional neural networks (TBCNNs),for processing tree-structured data. TBCNNsare related to existing convolutional neural networks (CNNs) and recursive neural networks (RNNs), but they combine the merits of both: thanks to their short propagation path, they are as efficient in learning as CNNs; yet they are also as structure-sensitive as RNNs. In this book, readers will also find a comprehensive literature review of related work, detailed descriptions of TBCNNs and their variants, and experiments applied to program analysis and natural language processing tasks. It is also an enjoyable read for all those with a general interest in deep learning.
Автор: Venkatesan, Ragav, Название: Convolutional Neural Networks In Vi ISBN: 1498770398 ISBN-13(EAN): 9781498770392 Издательство: Taylor&Francis Рейтинг: Цена: 168430.00 T Наличие на складе: Невозможна поставка. Описание: This book covers the fundamentals in designing and deploying techniques using deep architectures. It is intended to serve as a beginner`s guide to engineers or students who want to have a quick start on learning and/or building deep learning systems.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz