Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Introduction to Transfer Learning, Wang


Варианты приобретения
Цена: 46570.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 286 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Wang
Название:  Introduction to Transfer Learning
ISBN: 9789811975837
Издательство: Springer
Классификация:



ISBN-10: 9811975833
Обложка/Формат: Hardback
Страницы: 409
Вес: 0.46 кг.
Дата издания: 07.02.2023
Серия: Machine Learning: Foundations, Methodologies, and Applications
Язык: English
Издание: 1st ed. 2023
Иллюстрации: 40 tables, color; 1 illustrations, color; xxi, 329 p. 1 illus. in color.
Размер: 161 x 242 x 27
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: Algorithms and practice
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Transfer learning is one of the most important technologies in the era of artificial intelligence and deep learning. It seeks to leverage existing knowledge by transferring it to another, new domain. Over the years, a number of relevant topics have attracted the interest of the research and application community: transfer learning, pre-training and fine-tuning, domain adaptation, domain generalization, and meta-learning. This book offers a comprehensive tutorial on an overview of transfer learning, introducing new researchers in this area to both classic and more recent algorithms. Most importantly, it takes a “student’s” perspective to introduce all the concepts, theories, algorithms, and applications, allowing readers to quickly and easily enter this area. Accompanying the book, detailed code implementations are provided to better illustrate the core ideas of several important algorithms, presenting good examples for practice.
Дополнительное описание: Part I. Foundations of Transfer Learning.- Chapter 1. Introduction.- Chapter 2. From Machine Learning to Transfer Learning.- Chapter 3. Overview of Transfer Learning Algorithms.- Chapter 4. Instance Weighting Methods.- Chapter 5. Statistical Feature Trans


Introduction to statistical relational learning

Название: Introduction to statistical relational learning
ISBN: 0262072882 ISBN-13(EAN): 9780262072885
Издательство: MIT Press
Рейтинг:
Цена: 71280.00 T
Наличие на складе: Нет в наличии.
Описание: Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications.

Introduction to Deep Learning

Название: Introduction to Deep Learning
ISBN: 3319730037 ISBN-13(EAN): 9783319730035
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website.Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism.This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.

Introduction to Inverse Problems in Imaging

Автор: M Bertero
Название: Introduction to Inverse Problems in Imaging
ISBN: 1138434043 ISBN-13(EAN): 9781138434042
Издательство: Taylor&Francis
Рейтинг:
Цена: 173530.00 T
Наличие на складе: Нет в наличии.
Описание: This is a graduate textbook on the principles of linear inverse problems, methods of their approximate solution, and practical application in imaging. The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of readers from different backgrounds in science and engineering. Mathematical prerequisites are first courses in analysis, geometry, linear algebra, probability theory, and Fourier analysis. The authors concentrate on presenting easily implementable and fast solution algorithms. With examples and exercised throughout, the book will provide the reader with the appropriate background for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems.

Introduction to machine learning with applications in information security

Автор: Stamp, Mark
Название: Introduction to machine learning with applications in information security
ISBN: 0367573059 ISBN-13(EAN): 9780367573058
Издательство: Taylor&Francis
Рейтинг:
Цена: 42870.00 T
Наличие на складе: Нет в наличии.
Описание: This class-tested textbook will provide in-depth coverage of the fundamentals of machine learning, with an exploration of applications in information security. The book will cover malware detection, cryptography, and intrusion detection. The book will be relevant for students in machine learning and computer security courses.

Introduction to Wavelet Transforms

Автор: NIRDOSH BHATNAGAR
Название: Introduction to Wavelet Transforms
ISBN: 0367438798 ISBN-13(EAN): 9780367438791
Издательство: Taylor&Francis
Рейтинг:
Цена: 107190.00 T
Наличие на складе: Невозможна поставка.
Описание: This book introduces the basics of wavelet transforms, including continuous and discrete wavelet transforms, and Daubechies wavelets. It also includes elementary examples of wavelets, and certain well-known applications.

Gentle Introduction to Support Vector Machines in Biomedicin

Автор: Statnikov Alexander
Название: Gentle Introduction to Support Vector Machines in Biomedicin
ISBN: 9814324396 ISBN-13(EAN): 9789814324397
Издательство: World Scientific Publishing
Рейтинг:
Цена: 68640.00 T
Наличие на складе: Невозможна поставка.
Описание: Support Vector Machines (SVMs) are among the important developments in pattern recognition and statistical machine learning. This book introduces SVMs and their extensions and allows biomedical researchers to understand and apply them in real-life research in a very easy manner.

Introduction to Natural Language Processing

Автор: Eisenstein Jacob
Название: Introduction to Natural Language Processing
ISBN: 0262042843 ISBN-13(EAN): 9780262042840
Издательство: MIT Press
Рейтинг:
Цена: 84650.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques.

This textbook provides a technical perspective on natural language processing--methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation.

The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.


Introduction to Bayesian Statistics

Автор: Karl-Rudolf Koch
Название: Introduction to Bayesian Statistics
ISBN: 3642091830 ISBN-13(EAN): 9783642091834
Издательство: Springer
Рейтинг:
Цена: 113180.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents Bayes` theorem, the estimation of unknown parameters, the determination of confidence regions and the derivation of tests of hypotheses for the unknown parameters.

Computer Algebra with LISP and REDUCE

Автор: F. Brackx; D. Constales
Название: Computer Algebra with LISP and REDUCE
ISBN: 0792314417 ISBN-13(EAN): 9780792314417
Издательство: Springer
Рейтинг:
Цена: 88500.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: One service mathematics has rendered the tEL moi, .... si j'avait su comment en revenir. je n'y serais point alle'.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- sense', The series is divergent; therefore we may be Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics, ..'. All arguably true. And all statements obtainable this way form part of the raison d'elre of this series.

Optimization for computer vision

Автор: Treiber, Marco Alexander
Название: Optimization for computer vision
ISBN: 1447152824 ISBN-13(EAN): 9781447152828
Издательство: Springer
Рейтинг:
Цена: 111790.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Optimization for Computer Vision

Signals, Instrumentation, Control, And Machine Learning: An Integrative Introduction

Автор: Joseph Bentsman
Название: Signals, Instrumentation, Control, And Machine Learning: An Integrative Introduction
ISBN: 9811252319 ISBN-13(EAN): 9789811252310
Издательство: World Scientific Publishing
Рейтинг:
Цена: 95040.00 T
Наличие на складе: Поставка под заказ.
Описание: This book stems from a unique and a highly effective approach to introducing signal processing, instrumentation, diagnostics, filtering, control, system integration, and machine learning.It presents the interactive industrial grade software testbed of mold oscillator that captures the distortion induced by beam resonance and uses this testbed as a virtual lab to generate input-output data records that permit unravelling complex system behavior, enhancing signal processing, modeling, and simulation background, and testing controller designs.All topics are presented in a visually rich and mathematically well supported, but not analytically overburdened format. By incorporating software testbed into homework and project assignments, the narrative guides a reader in an easily followed step-by-step fashion towards finding the mold oscillator disturbance removal solution currently used in the actual steel production, while covering the key signal processing, control, system integration, and machine learning concepts.The presentation is extensively class-tested and refined though the six-year usage of the book material in a required engineering course at the University of Illinois at Urbana-Champaign.

An Introduction to Object Recognition

Автор: Marco Alexander Treiber
Название: An Introduction to Object Recognition
ISBN: 1447125789 ISBN-13(EAN): 9781447125785
Издательство: Springer
Рейтинг:
Цена: 97820.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This text/reference provides a comprehensive introduction to object recognition (OR). The book presents an overview of the diverse applications for OR and highlights important algorithm classes, presenting representative example algorithms for each class.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия