Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Recurrent neural networks :, Amit Kumar Tyagi, Ajith Abraham


Варианты приобретения
Цена: 168430.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 165 шт.  
При оформлении заказа до: 2025-09-29
Ориентировочная дата поставки: начало Ноября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Amit Kumar Tyagi, Ajith Abraham   (Амит Кумар Тьяги)
Название:  Recurrent neural networks :
Перевод названия: Амит Кумар Тьяги: Рекуррентные нейронные сети
ISBN: 9781032081649
Издательство: Taylor&Francis
Классификация:
ISBN-10: 1032081643
Обложка/Формат: Hardback
Страницы: 396
Вес: 0.92 кг.
Дата издания: 08.08.2022
Язык: English
Иллюстрации: 72 tables, black and white; 131 line drawings, black and white; 70 halftones, black and white; 86 illustrations, color; 115 illustrations, black and white
Размер: 234 x 156
Читательская аудитория: Postgraduate, research & scholarly
Подзаголовок: Concepts and applications
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание: This book comprehensively covers concepts of recurrent neural networks and discusses practical issues such as predictability and nonlinearity detecting. It will an ideal text for senior undergraduate, graduate students, researchers, and professionals in the fields of electrical, electronics and communication, and computer engineering.

Zeroing Neural Networks: Finite-time Convergence Design, Analysis and Applications

Автор: Lin Xiao, Lei Jia
Название: Zeroing Neural Networks: Finite-time Convergence Design, Analysis and Applications
ISBN: 1119985994 ISBN-13(EAN): 9781119985990
Издательство: Wiley
Рейтинг:
Цена: 111930.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Zeroing Neural Networks Describes the theoretical and practical aspects of finite-time ZNN methods for solving an array of computational problems Zeroing Neural Networks (ZNN) have become essential tools for solving discretized sensor-driven time-varying matrix problems in engineering, control theory, and on-chip applications for robots. Building on the original ZNN model, finite-time zeroing neural networks (FTZNN) enable efficient, accurate, and predictive real-time computations. Setting up discretized FTZNN algorithms for different time-varying matrix problems requires distinct steps.

Zeroing Neural Networks provides in-depth information on the finite-time convergence of ZNN models in solving computational problems. Divided into eight parts, this comprehensive resource covers modeling methods, theoretical analysis, computer simulations, nonlinear activation functions, and more. Each part focuses on a specific type of time-varying computational problem, such as the application of FTZNN to the Lyapunov equation, linear matrix equation, and matrix inversion.

Throughout the book, tables explain the performance of different models, while numerous illustrative examples clarify the advantages of each FTZNN method. In addition, the book: Describes how to design, analyze, and apply FTZNN models for solving computational problems Presents multiple FTZNN models for solving time-varying computational problems Details the noise-tolerance of FTZNN models to maximize the adaptability of FTZNN models to complex environments Includes an introduction, problem description, design scheme, theoretical analysis, illustrative verification, application, and summary in every chapter Zeroing Neural Networks: Finite-time Convergence Design, Analysis and Applications is an essential resource for scientists, researchers, academic lecturers, and postgraduates in the field, as well as a valuable reference for engineers and other practitioners working in neurocomputing and intelligent control.


Architectureprogress In Neural Networks               (Axnn)

Автор: WILSON
Название: Architectureprogress In Neural Networks (Axnn)
ISBN: 1567500455 ISBN-13(EAN): 9781567500455
Издательство: Elsevier Science
Рейтинг:
Цена: 70250.00 T
Наличие на складе: Невозможна поставка.
Описание: This volume has a special thematic focus on the architecture of neural networks. It is part of a series that reviews research in natural and synthetic neural networks, as well as research in modelling, analysis, design, and development of neural networks in software and hardware areas.

Applied Neural Networks and Soft Computing

Автор: Ivan Stanimirovic?
Название: Applied Neural Networks and Soft Computing
ISBN: 1773613863 ISBN-13(EAN): 9781773613864
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 164470.00 T
Наличие на складе: Невозможна поставка.
Описание: Examines the relation between neural networks and soft computing. A neural network is a system of hardware and software designed after the operations of neurons. Applied neural networks have a plethora of applications and the text tries to touch every aspect to give readers a wider perspective.

Soft Computing with NeuroFuzzy Systems

Автор: Jovan Pehcevski
Название: Soft Computing with NeuroFuzzy Systems
ISBN: 1774077795 ISBN-13(EAN): 9781774077795
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 156150.00 T
Наличие на складе: Нет в наличии.
Описание: Covers different topics from soft computing and neuro-fuzzy systems, including intelligent neuro-fuzzy models, adaptive neuro-fuzzy systems, neuro-fuzzy inference systems, and neuro-fuzzy control.

Автор: OMIDVAR
Название: Progress In Neural Networksprogress In Neural Networks (Axnn)
ISBN: 0893919659 ISBN-13(EAN): 9780893919658
Издательство: Elsevier Science
Рейтинг:
Цена: 74180.00 T
Наличие на складе: Невозможна поставка.
Описание: This series reviews research in natural and synthetic neural networks, as well as reviews research in modelling, analysis, design and development of neural networks in software and hardware areas.

Recurrent Neural Networks for Short-Term Load Forecasting

Автор: Filippo Maria Bianchi; Enrico Maiorino; Michael C.
Название: Recurrent Neural Networks for Short-Term Load Forecasting
ISBN: 3319703374 ISBN-13(EAN): 9783319703374
Издательство: Springer
Рейтинг:
Цена: 51230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series.

Recurrent Neural Networks with Python Quick Start Guide

Автор: Kostadinov Simeon
Название: Recurrent Neural Networks with Python Quick Start Guide
ISBN: 1789132339 ISBN-13(EAN): 9781789132335
Издательство: Неизвестно
Рейтинг:
Цена: 40450.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Developers struggle to find an easy to follow learning resource for implementing Recurrent Neural Network(RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve the results. This book will teach you ...

Theory, Concepts and Methods of Recurrent Neural Networks and Soft Computing

Автор: Rogerson Jeremy
Название: Theory, Concepts and Methods of Recurrent Neural Networks and Soft Computing
ISBN: 1632404931 ISBN-13(EAN): 9781632404930
Издательство: Неизвестно
Цена: 177730.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.

Supervised Sequence Labelling with Recurrent Neural Networks

Автор: Alex Graves
Название: Supervised Sequence Labelling with Recurrent Neural Networks
ISBN: 3642432182 ISBN-13(EAN): 9783642432187
Издательство: Springer
Рейтинг:
Цена: 104480.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book offers a complete framework for classifying and transcribing sequential data with recurrent neural networks. It uses state-of-the-art results in speech and handwriting recognition to show the framework in action.

Recurrent Neural Networks for Prediction

Автор: Danilo P. Mandic, Jonathon A. Chambers
Название: Recurrent Neural Networks for Prediction
ISBN: 0471495174 ISBN-13(EAN): 9780471495178
Издательство: Wiley
Рейтинг:
Цена: 184750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Neural networks consist of interconnected groups of neurons which function as processing units and aim to reconstruct the operation of the human brain.

Learning with Recurrent Neural Networks

Автор: Barbara Hammer
Название: Learning with Recurrent Neural Networks
ISBN: 185233343X ISBN-13(EAN): 9781852333430
Издательство: Springer
Рейтинг:
Цена: 104480.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Folding networks, a generalization of recurrent neural networks to tree structured inputs, are investigated as a mechanism to learn regularities on classical symbolic data. Also, the architecture, the training mechanism, and several applications in different areas are explained in this work.

Neural Network Methods in Natural Language Processing

Автор: Goldberg Yoav
Название: Neural Network Methods in Natural Language Processing
ISBN: 1627052984 ISBN-13(EAN): 9781627052986
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 76690.00 T
Наличие на складе: Нет в наличии.
Описание: Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries.The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия