Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context, Kunczik
Автор: Shengbo Eben Li Название: Reinforcement Learning for Sequential Decision and Optimal Control ISBN: 9811977836 ISBN-13(EAN): 9789811977831 Издательство: Springer Рейтинг: Цена: 74530.00 T Наличие на складе: Поставка под заказ. Описание: Have you ever wondered how AlphaZero learns to defeat the top human Go players? Do you have any clues about how an autonomous driving system can gradually develop self-driving skills beyond normal drivers? What is the key that enables AlphaStar to make decisions in Starcraft, a notoriously difficult strategy game that has partial information and complex rules? The core mechanism underlying those recent technical breakthroughs is reinforcement learning (RL), a theory that can help an agent to develop the self-evolution ability through continuing environment interactions. In the past few years, the AI community has witnessed phenomenal success of reinforcement learning in various fields, including chess games, computer games and robotic control. RL is also considered to be a promising and powerful tool to create general artificial intelligence in the future. As an interdisciplinary field of trial-and-error learning and optimal control, RL resembles how humans reinforce their intelligence by interacting with the environment and provides a principled solution for sequential decision making and optimal control in large-scale and complex problems. Since RL contains a wide range of new concepts and theories, scholars may be plagued by a number of questions: What is the inherent mechanism of reinforcement learning? What is the internal connection between RL and optimal control? How has RL evolved in the past few decades, and what are the milestones? How do we choose and implement practical and effective RL algorithms for real-world scenarios? What are the key challenges that RL faces today, and how can we solve them? What is the current trend of RL research? You can find answers to all those questions in this book. The purpose of the book is to help researchers and practitioners take a comprehensive view of RL and understand the in-depth connection between RL and optimal control. The book includes not only systematic and thorough explanations of theoretical basics but also methodical guidance of practical algorithm implementations. The book intends to provide a comprehensive coverage of both classic theories and recent achievements, and the content is carefully and logically organized, including basic topics such as the main concepts and terminologies of RL, Markov decision process (MDP), Bellman’s optimality condition, Monte Carlo learning, temporal difference learning, stochastic dynamic programming, function approximation, policy gradient methods, approximate dynamic programming, and deep RL, as well as the latest advances in action and state constraints, safety guarantee, reference harmonization, robust RL, partially observable MDP, multiagent RL, inverse RL, offline RL, and so on.
Автор: Farsi, Milad, Название: Model-based reinforcement learning : ISBN: 111980857X ISBN-13(EAN): 9781119808572 Издательство: Wiley Рейтинг: Цена: 108770.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book is for researchers and students in statistics, data mining, computer science, machine learning, marketing and also practitioners who implement recommender systems. It provides an in-depth discussion of challenges encountered in deploying real-life large-scale systems and state-of-the-art solutions in personalization, explore/exploit, dimension reduction and multi-objective optimization.
Автор: Sutton, Richard S. Barto, Andrew G. Название: Reinforcement learning ISBN: 0262193981 ISBN-13(EAN): 9780262193986 Издательство: MIT Press Рейтинг: Цена: 66930.00 T Наличие на складе: Нет в наличии. Описание: An account of key ideas and algorithms in reinforcement learning. The discussion ranges from the history of the field`s intellectual foundations to recent developments and applications. Areas studied include reinforcement learning problems in terms of Markov decision problems and solution methods.
Автор: Chinnamgari Sunil Kumar Название: R Machine Learning Projects ISBN: 1789807948 ISBN-13(EAN): 9781789807943 Издательство: Неизвестно Рейтинг: Цена: 53940.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The purpose of the book is to help a machine learning practitioner gets hands-on experience in working with real-world data and apply modern machine learning algorithms. You will learn to implement each algorithm to a specific industry problem. It covers projects involving both supervised as well as unsupervised learning approaches.
Автор: Li, Chong Название: Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies ISBN: 1138543535 ISBN-13(EAN): 9781138543539 Издательство: Taylor&Francis Рейтинг: Цена: 84710.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.
Автор: Balakrishnan Kaushik Название: TensorFlow Reinforcement Learning Quick Start Guide ISBN: 1789533589 ISBN-13(EAN): 9781789533583 Издательство: Неизвестно Рейтинг: Цена: 33090.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book is an essential guide for anyone interested in Reinforcement Learning. The book provides an actionable reference for Reinforcement Learning algorithms and their applications using TensorFlow and Python. It will help readers leverage the power of algorithms such as Deep Q-Network (DQN), Deep Deterministic Policy Gradients (DDPG), and ...
Автор: Hua, Changsheng Название: Reinforcement Learning Aided Performance Optimization of Feedback Control Systems ISBN: 3658330333 ISBN-13(EAN): 9783658330330 Издательство: Springer Рейтинг: Цена: 65210.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Changsheng Hua proposes two approaches, an input/output recovery approach and a performance index-based approach for robustness and performance optimization of feedback control systems.
Автор: Bilgin Enes Название: Mastering Reinforcement Learning with Python: Build next-generation, self-learning models using reinforcement learning techniques and best practices ISBN: 1838644148 ISBN-13(EAN): 9781838644147 Издательство: Неизвестно Рейтинг: Цена: 60070.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book focuses on expert-level explanations and implementations of scalable reinforcement learning algorithms and approaches. Starting with the fundamentals, the book covers state-of-the-art methods from bandit problems to meta-reinforcement learning. You`ll also explore practical examples inspired by real-life problems from the industry.
Автор: Palanisamy Praveen Название: TensorFlow 2 Reinforcement Learning Cookbook: Over 50 recipes to help you build, train, and deploy learning agents for real-world applications ISBN: 183898254X ISBN-13(EAN): 9781838982546 Издательство: Неизвестно Рейтинг: Цена: 60070.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This cookbook will help you to gain a solid understanding of deep reinforcement learning (RL) algorithms with the help of concise, easy-to-follow implementations from scratch. You`ll learn how to implement these algorithms with minimal code and develop AI applications to solve real-world and business problems using RL.
Автор: Li, Chong Qiu, Meikang Название: Reinforcement learning for cyber-physical systems ISBN: 0367656639 ISBN-13(EAN): 9780367656638 Издательство: Taylor&Francis Рейтинг: Цена: 45930.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.
Автор: Francois-Lavet Vincent, Henderson Peter, Islam Riashat Название: An Introduction to Deep Reinforcement Learning ISBN: 1680835386 ISBN-13(EAN): 9781680835380 Издательство: Неизвестно Рейтинг: Цена: 91040.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Provides a starting point for understanding deep reinforcement learning. Although written at a research level it provides a comprehensive and accessible introduction to deep reinforcement learning models, algorithms and techniques.
Автор: Da Silva Felipe Leno, Reali Costa Anna Helena Название: Transfer Learning for Multiagent Reinforcement Learning Systems ISBN: 1636391346 ISBN-13(EAN): 9781636391342 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 53590.00 T Наличие на складе: Нет в наличии. Описание:
Learning to solve sequential decision-making tasks is difficult. Humans take years exploring the environment essentially in a random way until they are able to reason, solve difficult tasks, and collaborate with other humans towards a common goal. Artificial Intelligent agents are like humans in this aspect. Reinforcement Learning (RL) is a well-known technique to train autonomous agents through interactions with the environment. Unfortunately, the learning process has a high sample complexity to infer an effective actuation policy, especially when multiple agents are simultaneously actuating in the environment.
However, previous knowledge can be leveraged to accelerate learning and enable solving harder tasks. In the same way humans build skills and reuse them by relating different tasks, RL agents might reuse knowledge from previously solved tasks and from the exchange of knowledge with other agents in the environment. In fact, virtually all of the most challenging tasks currently solved by RL rely on embedded knowledge reuse techniques, such as Imitation Learning, Learning from Demonstration, and Curriculum Learning.
This book surveys the literature on knowledge reuse in multiagent RL. The authors define a unifying taxonomy of state-of-the-art solutions for reusing knowledge, providing a comprehensive discussion of recent progress in the area. In this book, readers will find a comprehensive discussion of the many ways in which knowledge can be reused in multiagent sequential decision-making tasks, as well as in which scenarios each of the approaches is more efficient. The authors also provide their view of the current low-hanging fruit developments of the area, as well as the still-open big questions that could result in breakthrough developments. Finally, the book provides resources to researchers who intend to join this area or leverage those techniques, including a list of conferences, journals, and implementation tools.
This book will be useful for a wide audience; and will hopefully promote new dialogues across communities and novel developments in the area.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz