Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Machine Learning in Industry, Datta


Варианты приобретения
Цена: 158380.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 268 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Datta
Название:  Machine Learning in Industry
ISBN: 9783030758493
Издательство: Springer
Классификация:

ISBN-10: 3030758494
Обложка/Формат: Soft cover
Страницы: 197
Вес: 0.33 кг.
Дата издания: 09.08.2022
Серия: Management and Industrial Engineering
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 71 illustrations, color; 12 illustrations, black and white; x, 197 p. 83 illus., 71 illus. in color.
Размер: 235 x 155
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book covers different machine learning techniques such as artificial neural network, support vector machine, rough set theory and deep learning. It points out the difference between the techniques and their suitability for specific applications. This book also describes different applications of machine learning techniques for industrial problems. The book includes several case studies, helping researchers in academia and industries aspiring to use machine learning for solving practical industrial problems.
Дополнительное описание: Fundamentals of Machine learning.- Neural network model identification studies to predict residual stress of a steel plate based on a non-destructive Barkhausen noise measurement.- Data Driven Optimization of Blast Furnace Iron Making Process Using Evolut


Linear Algebra and Learning from Data

Автор: Strang Gilbert
Название: Linear Algebra and Learning from Data
ISBN: 0692196382 ISBN-13(EAN): 9780692196380
Издательство: Cambridge Academ
Рейтинг:
Цена: 66520.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.

Deep Learning

Автор: Goodfellow Ian, Bengio Yoshua, Courville Aaron
Название: Deep Learning
ISBN: 0262035618 ISBN-13(EAN): 9780262035613
Издательство: MIT Press
Рейтинг:
Цена: 90290.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject."
-- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.


Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 124150.00 T
Наличие на складе: Невозможна поставка.
Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.


Bandit Algorithms

Автор: Tor Lattimore, Csaba Szepesvari
Название: Bandit Algorithms
ISBN: 1108486827 ISBN-13(EAN): 9781108486828
Издательство: Cambridge Academ
Рейтинг:
Цена: 46470.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for graduate students interested in exploring stochastic, adversarial and Bayesian frameworks.

Machine learning for speaker recognition

Автор: Mak, Man-wai
Название: Machine learning for speaker recognition
ISBN: 1108428126 ISBN-13(EAN): 9781108428125
Издательство: Cambridge Academ
Рейтинг:
Цена: 98210.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Understand fundamental and advanced statistical and deep learning models for robust speaker recognition and domain adaptation. Presenting state-of-the-art machine learning techniques for speaker recognition, this useful toolkit is perfect for graduates, researchers, and engineers in electrical engineering, computer science and applied mathematics.

Computational Intelligence for Machine Learning and Healthcare Informatics

Автор: Rajshree Srivastava, Pradeep Kumar Mallick, Siddha
Название: Computational Intelligence for Machine Learning and Healthcare Informatics
ISBN: 3110647826 ISBN-13(EAN): 9783110647822
Издательство: Walter de Gruyter
Цена: 136310.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: THE SERIES: INTELLIGENT BIOMEDICAL DATA ANALYSIS
By focusing on the methods and tools for intelligent data analysis, this series aims to narrow the increasing gap between data gathering and data comprehension. Emphasis is also given to the problems resulting from automated data collection in modern hospitals, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring. In medicine, overcoming this gap is crucial since medical decision making needs to be supported by arguments based on existing medical knowledge as well as information, regularities and trends extracted from big data sets.

Machine learning in the oil and gas industry

Автор: Yogendra Narayan Pandey et al
Название: Machine learning in the oil and gas industry
ISBN: 1484260937 ISBN-13(EAN): 9781484260937
Издательство: Springer
Рейтинг:
Цена: 41920.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Apply machine and deep learning to solve some of the challenges in the oil and gas industry. The book begins with a brief discussion of the oil and gas exploration and production life cycle in the context of data flow through the different stages of industry operations. This leads to a survey of some interesting problems, which are good candidates for applying machine and deep learning approaches.

The initial chapters provide a primer on the Python programming language used for implementing the algorithms; this is followed by an overview of supervised and unsupervised machine learning concepts. The authors provide industry examples using open source data sets along with practical explanations of the algorithms, without diving too deep into the theoretical aspects of the algorithms employed. Machine Learning in the Oil and Gas Industry covers problems encompassing diverse industry topics, including geophysics (seismic interpretation), geological modeling, reservoir engineering, and production engineering.

Throughout the book, the emphasis is on providing a practical approach with step-by-step explanations and code examples for implementing machine and deep learning algorithms for solving real-life problems in the oil and gas industry. What You Will LearnUnderstanding the end-to-end industry life cycle and flow of data in the industrial operations of the oil and gas industryGet the basic concepts of computer programming and machine and deep learning required for implementing the algorithms usedStudy interesting industry problems that are good candidates for being solved by machine and deep learningDiscover the practical considerations and challenges for executing machine and deep learning projects in the oil and gas industry Who This Book Is For Professionals in the oil and gas industry who can benefit from a practical understanding of the machine and deep learning approach to solving real-life problems.


Machine learning and data science in the oil and gas industry

Автор: Patrick Bangert
Название: Machine learning and data science in the oil and gas industry
ISBN: 0128207140 ISBN-13(EAN): 9780128207147
Издательство: Elsevier Science
Рейтинг:
Цена: 125760.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value.

  • Chart an overview of the techniques and tools of machine learning including all the non-technological aspects necessary to be successful
  • Gain practical understanding of machine learning used in oil and gas operations through contributed case studies
  • Learn change management skills that will help gain confidence in pursuing the technology
  • Understand the workflow of a full-scale project and where machine learning benefits (and where it does not)

Machine Learning And Data Science In The Power Generation Industry

Автор: Bangert, Patrick
Название: Machine Learning And Data Science In The Power Generation Industry
ISBN: 0128197420 ISBN-13(EAN): 9780128197424
Издательство: Elsevier Science
Рейтинг:
Цена: 121270.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Machine Learning and Data Science in the Power Generation Industry: Best Practices, Tools, and Case Studies explores current best practices and quantifies the value-add in developing data-oriented computational programs in the energy industry, with a focus on real-world case studies selected from modern practice. The book provides a set of realistic pathways for organizations seeking to develop machine learning methods, with discussion on data selection and curation, as well as organizational implementation in terms of staffing and continuing operationalization. The book articulates a body of case study-driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, emissions credits, and forecasting.

Empowering Sustainable Industrial 4.0 Systems With Machine Intelligence

Автор: Ahmad Muneer, Zaman Noor
Название: Empowering Sustainable Industrial 4.0 Systems With Machine Intelligence
ISBN: 1799892018 ISBN-13(EAN): 9781799892014
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 250410.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The integration of machine intelligence and IoT technologies can greatly help in devising cutting edge solutions to very recent issues of industrial applications. Machine intelligence is the most appropriate set of techniques for constructing prediction models due to its capability in handling large-scale and complex datasets.

Era of artificial intelligence, machine learning, and data science in the pharmaceutical industry

Название: Era of artificial intelligence, machine learning, and data science in the pharmaceutical industry
ISBN: 0128200456 ISBN-13(EAN): 9780128200452
Издательство: Elsevier Science
Рейтинг:
Цена: 110030.00 T
Наличие на складе: Поставка под заказ.
Описание: Collins Explore English is a 6-level course which provides full coverage of the Cambridge Primary English as a Second Language curriculum framework (0057) from 2020. With a magazine-style Student`s Resource Book, comprehensive Student`s Coursebook, and supportive Teacher`s Guide, it offers clear progression within and across levels.

Smart Agents for the Industry 4.0

Автор: Max Hoffmann
Название: Smart Agents for the Industry 4.0
ISBN: 3658277440 ISBN-13(EAN): 9783658277444
Издательство: Springer
Рейтинг:
Цена: 130430.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Max Hoffmann describes the realization of a framework that enables autonomous decision-making in industrial manufacturing processes by means of multi-agent systems and the OPC UA meta-modeling standard.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия