Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Recent Advances in Numerical Methods for Hyperbolic PDE Systems, Mu?oz-Ruiz


Варианты приобретения
Цена: 139750.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 189 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Mu?oz-Ruiz
Название:  Recent Advances in Numerical Methods for Hyperbolic PDE Systems
ISBN: 9783030728526
Издательство: Springer
Классификация:



ISBN-10: 3030728528
Обложка/Формат: Soft cover
Страницы: 269
Вес: 0.43 кг.
Дата издания: 10.06.2022
Серия: SEMA SIMAI Springer Series
Язык: English
Издание: 1st ed. 2021
Иллюстрации: 69 tables, color; 67 illustrations, color; 12 illustrations, black and white; x, 269 p. 79 illus., 67 illus. in color.; 69 tables, color; 67 illustrat
Размер: 235 x 155
Читательская аудитория: Professional & vocational
Основная тема: Mathematics
Подзаголовок: NumHyp 2019
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The present volume contains selected papers issued from the sixth edition of the International Conference Numerical methods for hyperbolic problems that took place in 2019 in M?laga (Spain). NumHyp conferences, which began in 2009, focus on recent developments and new directions in the field of numerical methods for hyperbolic partial differential equations (PDEs) and their applications. The 11 chapters of the book cover several state-of-the-art numerical techniques and applications, including the design of numerical methods with good properties (well-balanced, asymptotic-preserving, high-order accurate, domain invariant preserving, uncertainty quantification, etc.), applications to models issued from different fields (Euler equations of gas dynamics, Navier-Stokes equations, multilayer shallow-water systems, ideal magnetohydrodynamics or fluid models to simulate multiphase flow, sediment transport, turbulent deflagrations, etc.), and the development of new nonlinear dispersive shallow-water models. The volume is addressed to PhD students and researchers in Applied Mathematics, Fluid Mechanics, or Engineering whose investigation focuses on or uses numerical methods for hyperbolic systems. It may also be a useful tool for practitioners who look for state-of-the-art methods for flow simulation.
Дополнительное описание: Part I: Numerical methods for general problems.- 1 J.M. Gallardo et al., Incomplete Riemann solvers based on functional approximations to the absolute value function.- 2 M. Frank et al., Entropy-based methods for uncertainty quantification of hyperbolic c


Finite Volume Methods for Hyperbolic Problems

Автор: Randall J. LeVeque
Название: Finite Volume Methods for Hyperbolic Problems
ISBN: 0521009243 ISBN-13(EAN): 9780521009249
Издательство: Cambridge Academ
Рейтинг:
Цена: 77090.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.

Автор: Kulikovskii, A.G. , Pogorelov, N.V. , Semenov, A
Название: Mathematical Aspects of Numerical Solution of Hyperbolic Systems
ISBN: 0367397730 ISBN-13(EAN): 9780367397739
Издательство: Taylor&Francis
Рейтинг:
Цена: 65320.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics, magnetohydrodynamics (MHD), shallow water, and solid dynamics equations. This treatment provides-for the first time in book form-a collection of recipes for applying higher-order non-oscillatory shock-capturing schemes to MHD modelling of physical phenomena.

The authors also address a number of original nonclassical problems, such as shock wave propagation in rods and composite materials, ionization fronts in plasma, and electromagnetic shock waves in magnets. They show that if a small-scale, higher-order mathematical model results in oscillations of the discontinuity structure, the variety of admissible discontinuities can exhibit disperse behavior, including some with additional boundary conditions that do not follow from the hyperbolic conservation laws. Nonclassical problems are accompanied by a multiple nonuniqueness of solutions. The authors formulate several selection rules, which in some cases easily allow a correct, physically realizable choice.

This work systematizes methods for overcoming the difficulties inherent in the solution of hyperbolic systems. Its unique focus on applications, both traditional and new, makes Mathematical Aspects of Numerical Solution of Hyperbolic Systems particularly valuable not only to those interested the development of numerical methods, but to physicists and engineers who strive to solve increasingly complicated nonlinear equations.


One-Dimensional Hyperbolic Conservation Laws and Their Applications

Автор: Coron Jean-Michel, Li Ta-Tsien, Li Yachun
Название: One-Dimensional Hyperbolic Conservation Laws and Their Applications
ISBN: 9813276177 ISBN-13(EAN): 9789813276178
Издательство: World Scientific Publishing
Рейтинг:
Цена: 137280.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is a collection of lecture notes for the LIASFMA Shanghai Summer School on 'One-dimensional Hyperbolic Conservation Laws and Their Applications' which was held during August 16 to August 27, 2015 at Shanghai Jiao Tong University, Shanghai, China. This summer school is one of the activities promoted by Sino-French International Associate Laboratory in Applied Mathematics (LIASFMA in short). LIASFMA was established jointly by eight institutions in China and France in 2014, which is aimed at providing a platform for some of the leading French and Chinese mathematicians to conduct in-depth researches, extensive exchanges, and student training in the field of applied mathematics. This summer school has the privilege of being the first summer school of the newly established LIASFMA, which makes it significant.

Advanced Numerical Approximation of Nonlinear Hyperbolic Equations

Автор: Alfio Quarteroni; B. Cockburn; C. Johnson; C.-W. S
Название: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations
ISBN: 3540649778 ISBN-13(EAN): 9783540649779
Издательство: Springer
Рейтинг:
Цена: 71690.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The most effective methodologies in the framework of finite elements, finite differences, finite volumes spectral methods and kinetic methods, are addressed, in particular high-order shock capturing techniques, discontinuous Galerkin methods, adaptive techniques based upon a-posteriori error analysis.

Stability and Boundary Stabilization of 1-D Hyperbolic Systems

Автор: Bastin
Название: Stability and Boundary Stabilization of 1-D Hyperbolic Systems
ISBN: 3319320602 ISBN-13(EAN): 9783319320601
Издательство: Springer
Рейтинг:
Цена: 88500.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices.The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary stabilization of systems of two balance laws by both full-state and dynamic output feedback in observer-controller form is solved by using a “backstepping” method, in which the gains of the feedback laws are solutions of an associated system of linear hyperbolic PDEs. The final chapter presents a case study on the control of navigable rivers to emphasize the main technological features that may occur in real live applications of boundary feedback control.Stability and Boundary Stabilization of 1-D Hyperbolic Systems will be of interest to graduate students and researchers in applied mathematics and control engineering. The wide range of applications it discusses will help it to have as broad an appeal within these groups as possible.

Recent Advances in Numerical Methods for Hyperbolic Pde Systems: Numhyp 2019

Автор: Muсoz-Ruiz Marнa Luz, Parйs Carlos, Russo Giovanni
Название: Recent Advances in Numerical Methods for Hyperbolic Pde Systems: Numhyp 2019
ISBN: 3030728498 ISBN-13(EAN): 9783030728496
Издательство: Springer
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Part I: Numerical methods for general problems.- 1 J.M. Gallardo et al., Incomplete Riemann solvers based on functional approximations to the absolute value function.- 2 M. Frank et al., Entropy-based methods for uncertainty quantification of hyperbolic conservation laws.- 3 I. Gomez Bueno et al., Well-balanced reconstruction operator for systems of balance laws: numerical implementation.- 4 V. Michel-Dansac and A. Thomann, On high-precision L?-stable IMEX schemes for scalar hyperbolic multi-scale Equations.- Part II: Numerical methods for speci_c problems.- 5 D. Grapsas et al., A staggered preassure correction numerical scheme to compute a travellimg reactive interface in a partially premixed mixture.- 6 M. Lukacova et al., New Invariant Domain Preserving Finite Volume Schemes for Compressible Flows.- 7 S. Jцns et al., Recent Advances and Complex Applications of the Compressible Ghost-Fluid Method.- 8 J. P. Berberich and C. Klingenberg, Entropy Stable Numerical Fluxes for Compressible Euler Equations which are Suitable for All Mach Numbers.- 9 P. Poullet et al., Residual based method for sediment transport.- Part III: New ow models.- 10 B. B. Dhia et al., Pseudo-compressibility, dispersive model and acoustic waves in shallow water flows.- 11 M. Ali Debyaoui and M. Ersoy, A Generalised Serre-Green-Naghdi equations for variable rectangular open channel hydraulics and its finite volume approximation.


Numerical Approximation of Hyperbolic Systems of Conservation Laws

Автор: Godlewski Edwige, Raviart Pierre-Arnaud
Название: Numerical Approximation of Hyperbolic Systems of Conservation Laws
ISBN: 1071613421 ISBN-13(EAN): 9781071613429
Издательство: Springer
Цена: 167700.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables.

Handbook on Numerical Methods for Hyperbolic Problems,18

Автор: Abgrall, Remi
Название: Handbook on Numerical Methods for Hyperbolic Problems,18
ISBN: 0444639101 ISBN-13(EAN): 9780444639103
Издательство: Elsevier Science
Рейтинг:
Цена: 179660.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations.

Handbook of Numerical Methods for Hyperbolic Problems,17

Автор: Abgrall, Remi
Название: Handbook of Numerical Methods for Hyperbolic Problems,17
ISBN: 0444637893 ISBN-13(EAN): 9780444637895
Издательство: Elsevier Science
Рейтинг:
Цена: 178540.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations.

This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.


Adaptive Control of Hyperbolic PDEs

Автор: Henrik Anfinsen; Ole Morten Aamo
Название: Adaptive Control of Hyperbolic PDEs
ISBN: 3030058786 ISBN-13(EAN): 9783030058784
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Adaptive Control of Linear Hyperbolic PDEs provides a comprehensive treatment of adaptive control of linear hyperbolic systems, using the backstepping method. It develops adaptive control strategies for different combinations of measurements and actuators, as well as for a range of different combinations of parameter uncertainty. The book treats boundary control of systems of hyperbolic partial differential equations (PDEs) with uncertain parameters. The authors develop designs for single equations, as well as any number of coupled equations. The designs are accompanied by mathematical proofs, which allow the reader to gain insight into the technical challenges associated with adaptive control of hyperbolic PDEs, and to get an overview of problems that are still open for further research. Although stabilization of unstable systems by boundary control and boundary sensing are the particular focus, state-feedback designs are also presented. The book also includes simulation examples with implementational details and graphical displays, to give readers an insight into the performance of the proposed control algorithms, as well as the computational details involved. A library of MATLAB® code supplies ready-to-use implementations of the control and estimation algorithms developed in the book, allowing readers to tailor controllers for cases of their particular interest with little effort. These implementations can be used for many different applications, including pipe flows, traffic flow, electrical power lines, and more.Adaptive Control of Linear Hyperbolic PDEs is of value to researchers and practitioners in applied mathematics, engineering and physics; it contains a rich set of adaptive control designs, including mathematical proofs and simulation demonstrations. The book is also of interest to students looking to expand their knowledge of hyperbolic PDEs.

Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems

Автор: Cl?ment Canc?s; Pascal Omnes
Название: Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems
ISBN: 3319861522 ISBN-13(EAN): 9783319861524
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

PART 4. Hyperbolic Problems. David Iampietro, Frederic Daude, Pascal Galon, and Jean-Marc Herard, A Weighted Splitting Approach For Low-Mach Number Flows.-

Florence Hubert and Remi Tesson, Weno scheme for transport equation on unstructured grids with a DDFV approach.- M.J. Castro, J.M. Gallardo and A. Marquina, New types of Jacobian-free approximate Riemann solvers for hyperbolic systems.- Charles Demay, Christian Bourdarias, Benoıt de Laage de Meux, Stephane Gerbi and Jean-Marc Herard, A fractional step method to simulate mixed flows in pipes with a compressible two-layer model.- Theo Corot, A second order cell-centered scheme for Lagrangian hydrodynamics.- Clement Colas, Martin Ferrand, Jean-Marc Herard, Erwan Le Coupanec and Xavier Martin, An implicit integral formulation for the modeling of inviscid fluid flows in domains containing obstacles.- Christophe Chalons and Maxime Stauffert, A high-order Discontinuous Galerkin Lagrange Projection scheme for the barotropic Euler equations.- Christophe Chalons, Regis Duvigneau and Camilla Fiorini, Sensitivity analysis for the Euler equations in Lagrangian coordinates.- Jooyoung Hahn, Karol Mikula, Peter Frolkovic, and Branislav Basara, Semi-implicit level set method with inflow-based gradient in a polyhedron mesh.- Thierry Goudon, Julie Llobell and Sebastian Minjeaud, A staggered scheme for the Euler equations.- Christian Bourdarias, Stephane Gerbi and Ralph Lteif, A numerical scheme for the propagation of internal waves in an oceanographic model.- Hamza Boukili and Jean-Marc Herard, A splitting scheme for three-phase flow models.- M. J Castro, C. Escalante and T. Morales de Luna, Modelling and simulation of non-hydrostatic shallow flows.- Svetlana Tokareva and Eleuterio Toro, A flux splitting method for the Baer-Nunziato equations of compressible two-phase flow.- Mohamed Boubekeur and Fayssal Benkhaldoun and Mohammed Seaid, GPU accelerated finite volume methods for three-dimensional shallow water flows.- Ward Melis, Thomas Rey and Giovanni Samaey, Projective integration for nonlinear BGK kinetic equations.- Lei Zhang, Jean-Michel Ghidaglia and Anela Kumbaro, Asymptotic preserving property of a semi-implicit method.- Sebastien Boyaval, A Finite-Volume discretization of viscoelastic Saint-Venant equations for FENE-P fluids.- David Coulette, Emmanuel Franck, Philippe Helluy, Michel Mehrenberger, Laurent Navoret, Palindromic Discontinuous Galerkin Method.- M. Lukacova-Medvid'ova, J. Rosemeier, P. Spichtinger and B. Wiebe, IMEX finite volume methods for cloud simulation.- Raimund Burger and Ilja Kroker, Hybrid stochastic Galerkin finite volumes for the diffusively corrected Lighthill-Whitham-Richards traffic model.- Hamed Zakerzadeh, The RS-IMEX scheme for the rotating shallow water equations with the Coriolis force.- Emmanuel Audusse, Minh Hieu Do, Pascal Omnes, Yohan Penel, Analysis of Apparent Topography scheme for the linear wave equation with Coriolis force.- N. Aıssiouene, M-O. Bristeau, E. Godlewski, A. Mangeney, C. Pares and J. Sainte-Marie, Application of a combined finite element - finite volume method to a 2D non-hydrostatic shallow water problem.- Emanuela Abbate, Angelo Iollo and Gabriella Puppo, A relaxation scheme for the simulation of low Mach number flows.- Stefan Vater, Nicole Beisiegel and Jorn Behrens, Comparison of wetting and drying between a RKDG2 method and classical FV based second-order hydrostatic reconstruction.- Anja Jeschke, Stefan Vater and J]orn Behrens, A Discontinuous Galerkin Method for Non-Hydrostatic Shallow Water Flows.- Remi Abgrall and Paola Bacigaluppi, Design of a Second-Order Fully Explicit Residual Distribution Scheme for Compressible Multiphase Flows.- Martin Campos Pinto, An Unstructured Forward-Backward Lagrangian Scheme for Transport Problems.- Nicole Goutal, Minh-Hoang Le and Philippe Ung, A Godunov-type scheme for Shallow Water equations dedicated to simulations of overland flows on stepped slop
Hyperbolic Systems with Analytic Coefficients

Автор: Tatsuo Nishitani
Название: Hyperbolic Systems with Analytic Coefficients
ISBN: 3319022725 ISBN-13(EAN): 9783319022727
Издательство: Springer
Рейтинг:
Цена: 46570.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: With regard to sufficient conditions for (B), we introduce hyperbolic systems with nondegenerate characteristics, which contain strictly hyperbolic systems, and prove that the Cauchy problem for hyperbolic systems with nondegenerate characteristics is well posed for any lower order term.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия