Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Convex Optimization for Machine Learning, Changho Suh


Варианты приобретения
Цена: 134910.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 151 шт.  
При оформлении заказа до: 2025-09-10
Ориентировочная дата поставки: начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Changho Suh
Название:  Convex Optimization for Machine Learning
ISBN: 9781638280521
Издательство: Mare Nostrum (Eurospan)
Классификация:
ISBN-10: 1638280525
Обложка/Формат: Hardback
Страницы: 350
Вес: 0.75 кг.
Дата издания: 30.09.2022
Серия: Mathematics
Язык: English
Размер: 164 x 241 x 31
Читательская аудитория: Professional and scholarly
Ключевые слова: Artificial intelligence,Optimization, COMPUTERS / Intelligence (AI) & Semantics,MATHEMATICS / Optimization
Рейтинг:
Поставляется из: Англии
Описание: Provides an introduction to convex optimization, one of the powerful and tractable optimization problems that can be efficiently solved on a computer. The goal is to help develop a sense of what convex optimization is, and how it can be used in a widening array of practical contexts, with a particular emphasis on machine learning.

Convex Optimization

Автор: Stephen Boyd
Название: Convex Optimization
ISBN: 0521833787 ISBN-13(EAN): 9780521833783
Издательство: Cambridge Academ
Рейтинг:
Цена: 119670.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The focus of this book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Statistical Inference Via Convex Optimization

Автор: Juditsky Anatoli, Nemirovski Arkadi
Название: Statistical Inference Via Convex Optimization
ISBN: 0691197296 ISBN-13(EAN): 9780691197296
Издательство: Wiley
Рейтинг:
Цена: 97150.00 T
Наличие на складе: Нет в наличии.
Описание:

This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences.

Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems--sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals--demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems.

Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.


Convex analysis and nonlinear optimization

Автор: Borwein, Jonathan M. Lewis, Adrian S. (university Of Waterloo)
Название: Convex analysis and nonlinear optimization
ISBN: 1441921273 ISBN-13(EAN): 9781441921277
Издательство: Springer
Рейтинг:
Цена: 55850.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This new edition adds material on semismooth optimization, as well as several new proofs.

Introductory Lectures on Convex Optimization / A Basic Course

Автор: Nesterov Y.
Название: Introductory Lectures on Convex Optimization / A Basic Course
ISBN: 1402075537 ISBN-13(EAN): 9781402075537
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This is the first elementary exposition of the main ideas of complexity theory for convex optimization. Up to now, most of the material can be found only in special journals and research monographs. The book covers optimal methods and lower complexity bounds for smooth and non-smooth convex optimization. A separate chapter is devoted to polynomial-time interior-point methods. Audience: The book is suitable for industrial engineers and economists.

Non-Convex Multi-Objective Optimization

Автор: Panos M. Pardalos; Antanas ?ilinskas; Julius ?ilin
Название: Non-Convex Multi-Objective Optimization
ISBN: 3319610058 ISBN-13(EAN): 9783319610054
Издательство: Springer
Рейтинг:
Цена: 83850.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions.

Vector Optimization and Monotone Operators via Convex Duality

Автор: Sorin-Mihai Grad
Название: Vector Optimization and Monotone Operators via Convex Duality
ISBN: 3319088998 ISBN-13(EAN): 9783319088990
Издательство: Springer
Рейтинг:
Цена: 102480.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book investigates several duality approaches for vector optimization problems, while also comparing them. Special attention is paid to duality for linear vector optimization problems, for which a vector dual that avoids the shortcomings of the classical ones is proposed.

Vector Optimization and Monotone Operators via Convex Duality

Автор: Sorin-Mihai Grad
Название: Vector Optimization and Monotone Operators via Convex Duality
ISBN: 3319361902 ISBN-13(EAN): 9783319361901
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book investigates several duality approaches for vector optimization problems, while also comparing them. Special attention is paid to duality for linear vector optimization problems, for which a vector dual that avoids the shortcomings of the classical ones is proposed.

Global Optimization with Non-Convex Constraints

Автор: Roman G. Strongin; Yaroslav D. Sergeyev
Название: Global Optimization with Non-Convex Constraints
ISBN: 0792364902 ISBN-13(EAN): 9780792364900
Издательство: Springer
Рейтинг:
Цена: 287890.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents a new approach to global non-convex constrained optimization. Problem dimensionality is reduced via space-filling curves and to economize the search, constraint is accounted separately (penalties are not employed). The multicriteria case is also considered.

Advances in Convex Analysis and Global Optimization

Автор: Nicolas Hadjisavvas; Panos M. Pardalos
Название: Advances in Convex Analysis and Global Optimization
ISBN: 0792369424 ISBN-13(EAN): 9780792369424
Издательство: Springer
Рейтинг:
Цена: 167700.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A conference on Convex Analysis and Global Optimization was held in 2000 in Greece in honour of the memory of C. Caratheodory (1873-1950). This volume contains a selection of papers based on talks presented at the conference. The two themes of convexity and global optimization pervade the book.

Lagrange-type Functions in Constrained Non-Convex Optimization

Автор: Alexander M. Rubinov; Xiao-qi Yang
Название: Lagrange-type Functions in Constrained Non-Convex Optimization
ISBN: 1461348218 ISBN-13(EAN): 9781461348214
Издательство: Springer
Рейтинг:
Цена: 93160.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Thus the question arises how to generalize classical Lagrange and penalty functions, in order to obtain an appropriate scheme for reducing constrained optimiza- tion problems to unconstrained ones that will be suitable for sufficiently broad classes of optimization problems from both the theoretical and computational viewpoints.

Global Optimization with Non-Convex Constraints

Автор: Roman G. Strongin; Yaroslav D. Sergeyev
Название: Global Optimization with Non-Convex Constraints
ISBN: 1461371171 ISBN-13(EAN): 9781461371175
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.

Lectures on Convex Optimization

Автор: Nesterov
Название: Lectures on Convex Optimization
ISBN: 3319915770 ISBN-13(EAN): 9783319915777
Издательство: Springer
Рейтинг:
Цена: 55890.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The first elementary exposition of core ideas of complexity theory for convex optimization, this book explores optimal methods and lower complexity bounds for smooth and non-smooth convex optimization. Also covers polynomial-time interior-point methods.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия