Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines,
Автор: Liu, Bing (university Of Illinois, Chicago) Название: Sentiment analysis ISBN: 1108486371 ISBN-13(EAN): 9781108486378 Издательство: Cambridge Academ Рейтинг: Цена: 70740.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Sentiment analysis is the computational study of people`s opinions, emotions, and attitudes. This comprehensive introduction covers all core areas useful for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences. The second edition includes new deep learning analysis methods.
Автор: Arindam Chaudhuri Название: Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks ISBN: 9811374732 ISBN-13(EAN): 9789811374739 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book presents the latest research on hierarchical deep learning for multi-modal sentiment analysis. Further, it analyses sentiments in Twitter blogs from both textual and visual content using hierarchical deep learning networks: hierarchical gated feedback recurrent neural networks (HGFRNNs). Several studies on deep learning have been conducted to date, but most of the current methods focus on either only textual content, or only visual content. In contrast, the proposed sentiment analysis model can be applied to any social blog dataset, making the book highly beneficial for postgraduate students and researchers in deep learning and sentiment analysis. The mathematical abstraction of the sentiment analysis model is presented in a very lucid manner. The complete sentiments are analysed by combining text and visual prediction results. The book’s novelty lies in its development of innovative hierarchical recurrent neural networks for analysing sentiments; stacking of multiple recurrent layers by controlling the signal flow from upper recurrent layers to lower layers through a global gating unit; evaluation of HGFRNNs with different types of recurrent units; and adaptive assignment of HGFRNN layers to different timescales. Considering the need to leverage large-scale social multimedia content for sentiment analysis, both state-of-the-art visual and textual sentiment analysis techniques are used for joint visual-textual sentiment analysis. The proposed method yields promising results from Twitter datasets that include both texts and images, which support the theoretical hypothesis.
Natural language processing (NLP) went through a profound transformation in the mid-1980s when it shifted to make heavy use of corpora and data-driven techniques to analyze language.
Since then, the use of statistical techniques in NLP has evolved in several ways. One such example of evolution took place in the late 1990s or early 2000s, when full-fledged Bayesian machinery was introduced to NLP. This Bayesian approach to NLP has come to accommodate various shortcomings in the frequentist approach and to enrich it, especially in the unsupervised setting, where statistical learning is done without target prediction examples.
In this book, we cover the methods and algorithms that are needed to fluently read Bayesian learning papers in NLP and to do research in the area. These methods and algorithms are partially borrowed from both machine learning and statistics and are partially developed "in-house" in NLP. We cover inference techniques such as Markov chain Monte Carlo sampling and variational inference, Bayesian estimation, and nonparametric modeling. In response to rapid changes in the field, this second edition of the book includes a new chapter on representation learning and neural networks in the Bayesian context. We also cover fundamental concepts in Bayesian statistics such as prior distributions, conjugacy, and generative modeling. Finally, we review some of the fundamental modeling techniques in NLP, such as grammar modeling, neural networks and representation learning, and their use with Bayesian analysis.
Автор: Sharaff Aakanksha, Sinha G. R., Bhatia Surbhi Название: New Opportunities for Sentiment Analysis and Information Processing ISBN: 1799880621 ISBN-13(EAN): 9781799880622 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 196810.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts.
New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.
Автор: Erik Cambria; Amir Hussain Название: Sentic Computing ISBN: 3319236539 ISBN-13(EAN): 9783319236537 Издательство: Springer Рейтинг: Цена: 130430.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Sentic Computing
Автор: Basant Agarwal; Namita Mittal Название: Prominent Feature Extraction for Sentiment Analysis ISBN: 3319253417 ISBN-13(EAN): 9783319253411 Издательство: Springer Рейтинг: Цена: 121890.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
1 Introduction
2 Literature Survey
3 Machine Learning Approach for Sentiment Analysis
4 Semantic Parsing using Dependency Rules
5 Sentiment Analysis using ConceptNet Ontology and Context
Information
6 Semantic Orientation based Approach for Sentiment Analysis
7 Conclusions and FutureWork
References
Glossary Index
Автор: Basant Agarwal, Richi Nayak Название: Deep Learning-Based Approaches for Sentiment Analysis ISBN: 9811512159 ISBN-13(EAN): 9789811512155 Издательство: Springer Рейтинг: Цена: 149060.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years.
Автор: Soujanya Poria; Amir Hussain; Erik Cambria Название: Multimodal Sentiment Analysis ISBN: 3030069567 ISBN-13(EAN): 9783030069568 Издательство: Springer Рейтинг: Цена: 139750.00 T Наличие на складе: Поставка под заказ. Описание: This latest volume in the series, Socio-Affective Computing, presents a set of novel approaches to analyze opinionated videos and to extract sentiments and emotions. Textual sentiment analysis framework as discussed in this book contains a novel way of doing sentiment analysis by merging linguistics with machine learning. Fusing textual information with audio and visual cues is found to be extremely useful which improves text, audio and visual based unimodal sentiment analyzer. This volume covers the three main topics of: textual preprocessing and sentiment analysis methods; frameworks to process audio and visual data; and methods of textual, audio and visual features fusion.The inclusion of key visualization and case studies will enable readers to understand better these approaches. Aimed at the Natural Language Processing, Affective Computing and Artificial Intelligence audiences, this comprehensive volume will appeal to a wide readership and will help readers to understand key details on multimodal sentiment analysis.
Автор: Sharaff Aakanksha, Sinha G. R., Bhatia Surbhi Название: New Opportunities for Sentiment Analysis and Information Processing ISBN: 1799880613 ISBN-13(EAN): 9781799880615 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 260570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts.
New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.
Автор: Agarwal Basant, Nayak Richi, Mittal Namita Название: Deep Learning-Based Approaches for Sentiment Analysis ISBN: 9811512183 ISBN-13(EAN): 9789811512186 Издательство: Springer Цена: 149060.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years.
Автор: Agarwal Basant, Mittal Namita Название: Prominent Feature Extraction for Sentiment Analysis ISBN: 3319797751 ISBN-13(EAN): 9783319797755 Издательство: Springer Рейтинг: Цена: 93160.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
1 Introduction
2 Literature Survey
3 Machine Learning Approach for Sentiment Analysis
4 Semantic Parsing using Dependency Rules
5 Sentiment Analysis using ConceptNet Ontology and Context
Information
6 Semantic Orientation based Approach for Sentiment Analysis
7 Conclusions and FutureWork
References
Glossary Index
Автор: Bing Liu Название: Sentiment Analysis and Opinion Mining ISBN: 1608458849 ISBN-13(EAN): 9781608458844 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 41580.00 T Наличие на складе: Невозможна поставка. Описание: Sentiment analysis and opinion mining is the field of study that analyses people`s opinions, sentiments, evaluations, attitudes, and emotions from written language. This book is a comprehensive introductory and survey text. It covers all important topics and the latest developments in the field with over 400 references.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz