Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Kernel Methods for Machine Learning with Math and R: 100 Exercises for Building Logic, Suzuki Joe


Варианты приобретения
Цена: 41920.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 238 шт.  
При оформлении заказа до: 2025-10-06
Ориентировочная дата поставки: середина Ноября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Suzuki Joe
Название:  Kernel Methods for Machine Learning with Math and R: 100 Exercises for Building Logic
ISBN: 9789811903977
Издательство: Springer
Классификация:



ISBN-10: 9811903972
Обложка/Формат: Paperback
Страницы: 210
Вес: 0.30 кг.
Дата издания: 04.05.2022
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 29 illustrations, color; 3 illustrations, black and white; xii, 196 p. 32 illus., 29 illus. in color.
Размер: 234 x 156 x 11
Читательская аудитория: Professional & vocational
Подзаголовок: 100 exercises for building logic
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building R programs. The book’s main features are as follows: * The content is written in an easy-to-follow and self-contained style. * The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book. * The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels. * Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used. * Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed. * This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two.
Дополнительное описание: Chapter 1: Positive Definite Kernels.- Chapter 2: Hilbert Spaces.- Chapter 3: Reproducing Kernel Hilbert Space.- Chapter 4: Kernel Computations.- Chapter 5: MMD and HSIC.- Chapter 6: Gaussian Processes and Functional Data Analyses.


Kernel Methods for Machine Learning with Math and Python

Автор: Suzuki
Название: Kernel Methods for Machine Learning with Math and Python
ISBN: 9811904006 ISBN-13(EAN): 9789811904004
Издательство: Springer
Рейтинг:
Цена: 41920.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building Python programs. The book’s main features are as follows: * The content is written in an easy-to-follow and self-contained style. * The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book. * The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels. * Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used. * Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed. * This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two.

Kernel-based Data Fusion for Machine Learning

Автор: Shi Yu; L?on-Charles Tranchevent; Bart Moor; Yves
Название: Kernel-based Data Fusion for Machine Learning
ISBN: 3642267513 ISBN-13(EAN): 9783642267512
Издательство: Springer
Рейтинг:
Цена: 130590.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Data fusion problems arise in many different fields. This book provides a specific introduction to solve data fusion problems using support vector machines. The reader will require a good knowledge of data mining, machine learning and linear algebra.

Kernel Methods and Machine Learning

Автор: Kung
Название: Kernel Methods and Machine Learning
ISBN: 110702496X ISBN-13(EAN): 9781107024960
Издательство: Cambridge Academ
Рейтинг:
Цена: 90810.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Containing numerous algorithms and major theorems, this step-by-step guide covers the fundamentals of kernel-based learning theory. Including over two hundred problems and real-world examples, it is an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors.

Kernel mean embedding of distributions:

Автор: Muandet, Krikamol Fukumizu, Kenji Sriperumbudur, Bharath Scholkopf, Bernhard
Название: Kernel mean embedding of distributions:
ISBN: 1680832883 ISBN-13(EAN): 9781680832884
Издательство: Неизвестно
Рейтинг:
Цена: 91040.00 T
Наличие на складе: Невозможна поставка.
Описание: This monograph provides a comprehensive review of kernel mean embeddings of distributions and, in the course of doing so, discusses some challenging issues that could potentially lead to new research directions. The targeted audience includes graduate students and researchers in machine learning and statistics who are interested in the theory and applications of kernel mean embeddings.

Kernel Learning Algorithms for Face Recognition

Автор: Jun-Bao Li; Shu-Chuan Chu; Jeng-Shyang Pan
Название: Kernel Learning Algorithms for Face Recognition
ISBN: 1493952129 ISBN-13(EAN): 9781493952120
Издательство: Springer
Рейтинг:
Цена: 104480.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book covers the framework of kernel based face recognition. It discusses the advanced kernel learning algorithms and its application on face recognition. The book also focuses on the theoretical deviation, the system framework and experiments.

Information Theoretic Learning

Автор: Jose C. Principe
Название: Information Theoretic Learning
ISBN: 1441915699 ISBN-13(EAN): 9781441915696
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is the first cohesive treatment of ITL algorithms to adapt linear or nonlinear learning machines both in supervised and unsupervised paradigms. It compares the performance of ITL algorithms with the second order counterparts in many applications.

Information Theoretic Learning

Автор: Jose C. Principe
Название: Information Theoretic Learning
ISBN: 1461425859 ISBN-13(EAN): 9781461425854
Издательство: Springer
Рейтинг:
Цена: 144410.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is the first cohesive treatment of ITL algorithms to adapt linear or nonlinear learning machines both in supervised and unsupervised paradigms. It compares the performance of ITL algorithms with the second order counterparts in many applications.

Inductive Inference for Large Scale Text Classification

Автор: Catarina Silva; Bernadete Ribeiro
Название: Inductive Inference for Large Scale Text Classification
ISBN: 3642045324 ISBN-13(EAN): 9783642045325
Издательство: Springer
Рейтинг:
Цена: 139310.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explains and illustrates key methods in inductive inference in large scale text classification, especially kernel approaches. It covers a series of new techniques to enhance, scale and distribute text classification tasks.

Inductive Inference for Large Scale Text Classification

Автор: Catarina Silva; Bernadete Ribeiro
Название: Inductive Inference for Large Scale Text Classification
ISBN: 3642261345 ISBN-13(EAN): 9783642261343
Издательство: Springer
Рейтинг:
Цена: 113180.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explains and illustrates key methods in inductive inference in large scale text classification, especially kernel approaches. It covers a series of new techniques to enhance, scale and distribute text classification tasks.

Artificial Mind System

Автор: Tetsuya Hoya
Название: Artificial Mind System
ISBN: 3642424724 ISBN-13(EAN): 9783642424724
Издательство: Springer
Рейтинг:
Цена: 139750.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: "Artificial Mind System" exposes the reader to a broad spectrum of interesting areas in general brain science and mind-oriented studies. With a view that "the mind is a system always evolving", ideas inspired by many branches of studies related to brain science are integrated within the text, i.e.

AIDA-CMK: Multi-Algorithm Optimization Kernel Applied to Analog IC Sizing

Автор: Ricardo Louren?o; Nuno Louren?o; Nuno Horta
Название: AIDA-CMK: Multi-Algorithm Optimization Kernel Applied to Analog IC Sizing
ISBN: 3319159542 ISBN-13(EAN): 9783319159546
Издательство: Springer
Рейтинг:
Цена: 60940.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The proposed solution implements three approaches to multi-objective multi-constraint optimization, namely, an evolutionary approach with NSGAII, a swarm intelligence approach with MOPSO and stochastic hill climbing approach with MOSA.

Nonparametric Kernel Density Estimation and Its Computational Aspects

Автор: Gramacki
Название: Nonparametric Kernel Density Estimation and Its Computational Aspects
ISBN: 3319716875 ISBN-13(EAN): 9783319716879
Издательство: Springer
Рейтинг:
Цена: 130430.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book describes computational problems related to kernel density estimation (KDE)-one of the most important and widely used data smoothing techniques. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия