Interpretable Artificial Intelligence: A Perspective of Granular Computing, Pedrycz Witold, Chen Shyi-Ming
Автор: Hugo Jair Escalante; Sergio Escalera; Isabelle Guy Название: Explainable and Interpretable Models in Computer Vision and Machine Learning ISBN: 3319981307 ISBN-13(EAN): 9783319981307 Издательство: Springer Рейтинг: Цена: 93160.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning· Explanation Methods in Deep Learning· Learning Functional Causal Models with Generative Neural Networks· Learning Interpreatable Rules for Multi-Label Classification· Structuring Neural Networks for More Explainable Predictions· Generating Post Hoc Rationales of Deep Visual Classification Decisions· Ensembling Visual Explanations· Explainable Deep Driving by Visualizing Causal Attention· Interdisciplinary Perspective on Algorithmic Job Candidate Search· Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations
Research Motivations.- Research Objectives and Selected Approaches.- Challenges of WisTech (based on IGrC) for CAS Modeling, Controlling, and Monitoring.- Main Overview of Results.- Guide to the Contents of the Book.- The Concept of Complex System.- Examples of Complex Systems.- Concept of Complex Systems Engineering (CSE).- CSE Practice: CSE Crisis.- CSE Theory: Some Approaches.- TPGP: The Concept of the Theory - Practice Gap Problem.
Автор: Hiroshi Sakai; Mihir Chakraborty; Aboul-Ella Hassa Название: Rough Sets, Fuzzy Sets, Data Mining and Granular Computing ISBN: 3642106455 ISBN-13(EAN): 9783642106453 Издательство: Springer Рейтинг: Цена: 97820.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book constitutes the refereed proceedings of the 12th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2009, held in Delhi, India in December 2009 in conjunction with the Third International Conference on Pattern Recognition and Machine Intelligence, PReMI 2009.
Автор: Rafael Bello; Rafael Falc?n; Witold Pedrycz Название: Granular Computing: At the Junction of Rough Sets and Fuzzy Sets ISBN: 3642095682 ISBN-13(EAN): 9783642095689 Издательство: Springer Рейтинг: Цена: 204040.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This volume is a compilation of the best papers presented at the First International Symposium on Fuzzy and Rough Sets (ISFUROS 2006) held in Santa Clara, Cuba.
Автор: Pedrycz Witold, Chen Shyi-Ming Название: Interpretable Artificial Intelligence: A Perspective of Granular Computing ISBN: 3030649482 ISBN-13(EAN): 9783030649487 Издательство: Springer Цена: 149060.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book offers a comprehensive treatise on the recent pursuits of Artificial Intelligence (AI) - Explainable Artificial Intelligence (XAI) by casting the crucial features of interpretability and explainability in the original framework of Granular Computing.
Автор: Cardoso Jaime, Van Nguyen Hien, Heller Nicholas Название: Interpretable and Annotation-Efficient Learning for Medical Image Computing: Third International Workshop, IMIMIC 2020, Second International Workshop, ISBN: 3030611655 ISBN-13(EAN): 9783030611651 Издательство: Springer Рейтинг: Цена: 46570.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: iMIMIC 2020.- Assessing attribution maps for explaining CNN-based vertebral fracture classifiers.- Projective Latent Interventions for Understanding and Fine-tuning Classifiers.- Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging.- Improving the Performance and Explainability of Mammogram Classifiers with Local Annotations.- Improving Interpretability for Computer-aided Diagnosis tools on Whole Slide Imaging with Multiple Instance Learning and Gradient-based Explanations.- Explainable Disease Classification via weakly-supervised segmentation.- Reliable Saliency Maps for Weakly-Supervised Localization of Disease Patterns.- Explainability for regression CNN in fetal head circumference estimation from ultrasound images.- MIL3ID 2020.- Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins.- Semi-supervised Instance Segmentation with a Learned Shape Prior.- COMe-SEE: Cross-Modality Semantic Embedding Ensemble for Generalized Zero-Shot Diagnosis of Chest Radiographs.- Semi-supervised Machine Learning with MixMatch and Equivalence Classes.- Non-contrast CT Liver Segmentation using CycleGAN Data Augmentation from Contrast Enhanced CT.- Uncertainty Estimation in Medical Image Localization: Towards Robust Anterior Thalamus Targeting for Deep Brain Stimulation.- A Case Study of Transfer of Lesion-Knowledge.- Transfer Learning With Joint Optimization for Label-Efficient Medical Image Anomaly Detection.- Unsupervised Wasserstein Distance Guided Domain Adaptation for 3D Multi-Domain Liver Segmentation.- HydraMix-Net: A Deep Multi-task Semi-supervised Learning Approach for Cell Detection and Classification.- Semi-supervised classification of chest radiographs.- LABELS 2020.- Risk of training diagnostic algorithms on data with demographic bias.- Semi-Weakly Supervised Learning for Prostate Cancer Image Classification with Teacher-Student Deep Convolutional Networks.- Are pathologist-defined labels reproducible? Comparison of the TUPAC16 mitotic figure dataset with an alternative set of labels.- EasierPath: An Open-source Tool for Human-in-the-loop Deep Learning of Renal Pathology.- Imbalance-Effective Active Learning in Nucleus, Lymphocyte and Plasma Cell Detection.- Labeling of Multilingual Breast MRI Reports.- Predicting Scores of Medical Imaging Segmentation Methods with Meta-Learning.- Labelling imaging datasets on the basis of neuroradiology reports: a validation study.- Semi-Supervised Learning for Instrument Detection with a Class Imbalanced Dataset.- Paying Per-label Attention for Multi-label Extraction from Radiology Reports.
Автор: Krzysztof Cpa?ka Название: Design of Interpretable Fuzzy Systems ISBN: 3319850067 ISBN-13(EAN): 9783319850061 Издательство: Springer Рейтинг: Цена: 93160.00 T Наличие на складе: Поставка под заказ. Описание: The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms.
Автор: Krzysztof Cpa?ka Название: Design of Interpretable Fuzzy Systems ISBN: 3319528807 ISBN-13(EAN): 9783319528809 Издательство: Springer Рейтинг: Цена: 111790.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms.
The book outlines selected projects conducted under the supervision of the author. Moreover, it discusses significant relations between Interactive Granular Computing (IGrC) and numerous dynamically developing scientific domains worldwide, along with features characteristic of the author's approach to IGrC. The results presented are a continuation and elaboration of various aspects of Wisdom Technology, initiated and developed in cooperation with Professor Andrzej Skowron.
Based on the empirical findings from these projects, the author explores the following areas: (a) understanding the causes of the theory and practice gap problem (TPGP) in complex systems engineering (CSE);
(b) generalizing computing models of complex adaptive systems (CAS) (in particular, natural computing models) by constructing an interactive granular computing (IGrC) model of networks of interrelated interacting complex granules (c-granules), belonging to a single agent and/or to a group of agents;
(c) developing methodologies based on the IGrC model to minimize the negative consequences of the TPGP.
The book introduces approaches to the above issues, using the proposed IGrC model. In particular, the IGrC model refers to the key mechanisms used to control the processes related to the implementation of CSE projects.
One of the main aims was to develop a mechanism of IGrC control over computations that model a project's implementation processes to maximize the chances of its success, while at the same time minimizing the emerging risks. In this regard, the IGrC control is usually performed by means of properly selected and enforced (among project participants) project principles. These principles constitute examples of c-granules, expressed by complex vague concepts (represented by c-granules too). The c-granules evolve with time (in particular, the meaning of the concepts is also subject of change). This methodology is illustrated using project principles applied by the author during the implementation of the POLTAX, AlgoTradix, Merix, and Excavio projects outlined in the book.
Автор: Han Liu; Mihaela Cocea Название: Granular Computing Based Machine Learning ISBN: 331970057X ISBN-13(EAN): 9783319700571 Издательство: Springer Рейтинг: Цена: 111790.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Introduction, - Traditional Machine Learning, - Semi-supervised Learning through Machine Based Labelling, - Nature Inspired Semi-heuristic Learning, - Fuzzy Classification through Generative Multi-task Learning, - Multi-granularity Semi-random Data Partitioning, - Multi-granularity Rule Learning, - Case Studies, - Con
Автор: Tsau Young Lin; Yiyu Y. Yao; Lotfi A. Zadeh Название: Data Mining, Rough Sets and Granular Computing ISBN: 3790825085 ISBN-13(EAN): 9783790825084 Издательство: Springer Рейтинг: Цена: 181670.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: In essence, data mining deals with summarization of information which is resident in large data sets, while granular computing plays a key role in the summarization process by draw- ing together points (objects) which are related through similarity, proximity or functionality.
Автор: Witold Pedrycz Название: Granular Computing ISBN: 3790824879 ISBN-13(EAN): 9783790824872 Издательство: Springer Рейтинг: Цена: 153720.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: The landscape of granular computing is immensely rich and involves set theory (interval mathematics), fuzzy sets, rough sets, random sets linked together in a highly synergetic environment.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz